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ABSTRACT: Because of a limited volume of urine that can be collected
from a mouse, it is very difficult to apply the common strategy of using
multiple analytical techniques to analyze the metabolites to increase the
metabolome coverage for mouse urine metabolomics. We report an
enabling method based on differential isotope labeling liquid chromatog-
raphy mass spectrometry (LC−MS) for relative quantification of over 950
putative metabolites using 20 μL of urine as the starting material. The
workflow involves aliquoting 10 μL of an individual urine sample for 12C-
dansylation labeling that target amines and phenols. Another 10 μL of
aliquot was taken from each sample to generate a pooled sample that was
subjected to 13C-dansylation labeling. The 12C-labeled individual sample
was mixed with an equal volume of the 13C-labeled pooled sample. The
mixture was then analyzed by LC−MS to generate information on metabolite concentration differences among different
individual samples. The interday repeatability for the LC−MS runs was assessed, and the median relative standard deviation over
4 days was 5.0%. This workflow was then applied to a metabolomic biomarker discovery study using urine samples obtained from
the TgCRND8 mouse model of early onset familial Alzheimer’s disease (FAD) throughout the course of their pathological
deposition of beta amyloid (Aβ). It was showed that there was a distinct metabolomic separation between the AD prone mice
and the wild type (control) group. As early as 15−17 weeks of age (presymptomatic), metabolomic differences were observed
between the two groups, and after the age of 25 weeks the metabolomic alterations became more pronounced. The metabolomic
changes at different ages corroborated well with the phenotype changes in this transgenic mice model. Several useful candidate
biomarkers including methionine, desaminotyrosine, taurine, N1-acetylspermidine, and 5-hydroxyindoleacetic acid were
identified. Some of them were found in previous metabolomics studies in human cerebrospinal fluid or blood samples. This work
illustrates the utility of this isotope labeling LC−MS method for biomarker discovery using mouse urine metabolomics.
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■ INTRODUCTION

Alzheimer’s disease (AD) is one of the most common
neurodegenerative disorders in the elderly.1 Currently, there
is no effective treatment for AD. Furthermore, there are no
definitive biomarkers for the reliable clinical diagnosis of AD at
the early stage of development, although late-stage AD can be
diagnosed using MRI brain scans and protein biomarkers in
cerebrospinal fluid.2−4 The difficulty in diagnosing AD may
arise from the complex perturbations occurring in the genome,
transcriptome, proteome, and metabolome of the affected
individuals. While most AD biomarker studies have focused on
transcriptomic or proteomic assays, metabolomic assays may
prove to be sensitive enough to distinguish AD phenotypes
from normal.5−7 Traditional biochemical studies have shown

that neurodegenerative disorders are often linked to dis-
turbances in metabolic pathways related to neurotransmitter
synthesis,8,9 oxidative stress,10 and mitochondrial function.11

Metabolome analysis with a broad metabolite coverage may
allow us to monitor metabolite perturbations in many
biochemical pathways and to discover a panel of metabolite
biomarkers specific to AD.
Over the past few years, a significant number of

metabolomics studies on AD have been reported. These
include animal models as well as human studies. In human
studies, most investigated cerebrospinal fluid (CSF) sam-
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ples,12−15 plasma samples,15−18 or brain samples.19 In animal
models, brain tissues of mouse models were most commonly
used.20−22 Two mouse model studies used both brain and
plasma.23,24 All these studies indicated the metabolomic
changes associated with AD and showed the initial promise
of metabolomics techniques in the investigation of AD disease.
The analytical techniques employed include LC−electro-
chemical array (ECA),12,13 GC−MS,23 LC−MS,16,18,19,22

capillary electrophoresis (CE)−MS,25 and NMR.20,24 However,
each of these techniques could only detect a relatively small
number of metabolites. There is a need to develop more
sensitive and quantitative metabolomic approaches to search for
biomarkers of AD. We have recently reported a quantitative
metabolomic technique based on 13C-/12C-isotope dansylation
labeling combined with LC Fourier-transform ion cyclotron
resonance (FTICR) MS.26,27 Dansylation is a chemical
derivatization method that greatly enhances the electrospray
ionization (ESI) signal response and improves reversed-phase
(RP) LC separation and, hence, offers much more
comprehensive metabolome coverage. Furthermore, the
introduction of 13C-/12C-isotope tags enables relative (and
absolute) quantification by isotope dilution with much
improved measurement precision. This method has been
successfully applied for analyzing biological samples, including
human CSF,27 human urine,28 human saliva,29 and bacterial
cells.30,31

Urine metabolomics in a transgenic mice model of AD has
not been extensively studied. Only one urine metabolomics
study of mouse model of AD using NMR was reported very
recently.32 Because of a limited volume of urine available from a
mouse, it is technically challenging to perform urine
metabolomics with high metabolome coverage. However, due
to the noninvasive nature of sample collection, urine is an
excellent source for metabolomics, especially if one wishes to
find a set of noninvasive early stage diagnostic biomarkers,
which could be complementary to biomarkers in CSF, blood, or
brain tissue. Here we report a quantitative metabolomics
approach based on differential 13C-/12C-isotope labeling
combined with LC−FTICR−MS for urinary biomarker
discovery in a transgenic mouse model of AD.

■ EXPERIMENTAL SECTION

Chemicals and Reagents

All the chemicals and reagents, unless otherwise stated, were
purchased from Sigma-Aldrich Canada (Markham, ON,
Canada). For dansylation labeling reactions, the 12C-labeling
reagents were from Sigma-Aldrich and the 13C-labeling reagents
were synthesized in our lab using the procedures published
previously.26 LC−MS grade water, methanol, and acetonitrile
(ACN) were purchased from ThermoFisher Scientific
(Nepean, ON, Canada).
Mouse Model and Sample Collection

The TgCRND8 transgenic mice (see Results and Discussion
for more information) were used in this study. The strains of all
the mice were 129Svev, and the mice were fed with 4% mice
chow. The urine samples were collected at three different ages,
namely 15−17 weeks, 25−28 weeks, and 30−31 weeks. Table 1
shows the sample information about the mouse urine samples.
To avoid possible contamination with bedding material and
animal waste, the urine samples were collected by lifting the
mouse one-by-one from the home cage and immediately
placing into a brand new disposable plastic cage (Innovive Inc.

San Diego, CA). The mouse was left inside the empty cage to
urinate spontaneously, usually within 5 min but occasionally
with an interval of up to 30 min. Immediately after the mouse
had urinated, urine was pipetted from the floor of the cage into
a 1.5 mL Eppendorf tube and snap-frozen on dry ice.
It should be noted that using metabolic cages for collection

of 24 h urine is commonly done in metabolomics. In our
current work, mouse urine was collected at a fixed time interval
during the day, between 1:00 and 3:00 pm, and 6−8 h into the
daytime light cycle of the caged animals. While it is likely that
metabolites produced in mice fed ad libitum will still vary on a
diurnal rhythm, this sampling method with a 2 h time window
makes any error a systematic one. On 24 h urine collection,
urine metabolites over a 24 h period are pooled and thus
diurnal changes cannot be discerned either. One potential
drawback of 24 h collection is that labile metabolites may
degrade or oxidize during the sample collection period, whereas
samples produced by the protocol here are snap-frozen. Recent
work suggested that freezing urine samples is important to
reduce metabolome changes during the sample collection
process.33 We note that because our technique is sufficiently
sensitive to handle a small volume of urine from an animal
without the need of pooling, in the future we will compare 2 h
time window urine collection at various hours with the 24 h
urine collection method to examine any metabolome variations
caused by diurnal variation and collection methods.
Sample Preparation

Figure 1 shows the experimental workflow for sample
preparation and LC−MS analysis. A pooled sample was created
by aliquoting 10 μL of each of the 75 mouse urine samples and
mixing them well. The method for dansylation labeling of urine
was adapted from our previous report.26 Briefly, 10 μL of
individual mouse urine sample or 10 μL of the pooled sample
was diluted to 50 μL by adding 40 μL of water (LC−MS
grade), then mixed with 50 μL sodium carbonate/sodium
bicarbonate buffer (0.5 mol/L, pH 9.5) in reaction vials. A
volume of 50 μL of freshly prepared 12C-dansyl chloride
solution (20 mg/mL) was added to each of the individual
samples for light labeling. And 50 μL of 13C-dansyl chloride
solution (20 mg/mL) was added to each of the pooled sample
for heavy labeling. The dansylation reaction was performed in
an Innova-4000 benchtop incubator shaker at 60 °C for 60 min.
To quench the reaction, 10 μL of the 250 mM sodium
hydroxide solution was added. After additional 10 min
incubation, the 12C-dansylated individual sample was combined
with the 13C-dansylated pooled sample. The pH of the
combined mixture was adjusted to pH 3 by adding formic
acid. The mixture was then centrifuged for 10 min at 13 800g
and was ready for LC−MS injection. A mixture of 12C-
dansylatated pooled sample and 13C-dansylated pooled sample
in 1:1 (v:v) was used as a quality control (QC) sample.

Table 1. Information on the Mouse Urine Samples Used in
This Study

total no. of mice 24
no. of mice (male and female) 12 male 12 female
no. of mice (APP mutant and wild type) 12 APP 12 WT
total no. of samples (APP mutant and WT) 75 39 APP 36 WT
at the ages of 15−17 weeks 28 15 APP 13 WT
at the ages of 25−28 weeks 23 12 APP 11 WT
at the ages of 30−31 weeks 24 12 APP 12 WT
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LC−MS

The HPLC system was an Agilent capillary 1100 binary system
(Agilent, Palo Alto, CA). A reversed-phase Acquity BEH C18
column (1.0 × 100 mm, 1.7 μm particle size) was purchased
from Waters (Milford, MA). LC Solvent A was 0.1% (v/v)
formic acid in 5% (v/v) acetonitrile, and Solvent B was 0.1%
(v/v) formic acid in acetonitrile. The gradient elution profile
was as follows: t = 0 min, 20% B; t = 3.5 min, 35% B; t = 18
min, 65% B; t = 21 min, 95% B; t = 21.5 min, 95% B; t = 23
min, 98% B; t = 24 min, 98% B; t = 25.5 min, 20% B; t = 36.6
min, 20% B. The flow rate was 35 μL/min. The sample
injection volume was 1.0 μL. To minimize the carryover and
reduce the background noise peaks, a fast gradient elution of 22
min was run after each sample injection. The LC column was
directly connected to a Bruker 9.4 T Apex-Qe FTICR mass
spectrometer (Bruker, Billerica, MA) without splitting. The
electrospray ionization (ESI) mass spectra were collected in the
positive ion mode. The MS conditions used for FTICR-MS
were as follows: nitrogen nebulizer gas, 2.3 L/min; dry gas flow,
7.0 L/min; dry temperature, 195 °C; capillary voltage, 4200 V;
spray shield, 3700 V; acquisition size, 256 k; mass scan range,
m/z 200−1000; ion accumulation time, 1 s; TOF (AQS), 0.007
s; DC extract bias, 0.7 V. All the urine samples were put into
random order for injections. Eight injections of the QC sample
(one QC injection after 9 sample injections) were used to
monitor the performance of LC−MS running during the whole
experiment.
We note that because of the slow data acquisition speed with

the FTICR−MS instrument (1 spectrum/s) used to achieve
optimal mass resolution and MS detection sensitivity, we
compromised the chromatographic performance, that is, using a

slower flow rate than optimal for LC separation. However,
using the 1.7 μm particle size column, the chromatographic
resolution is still good, which is demonstrated in the extracted
ion chromatograms of two metabolites (m/z 592.1478 with
base peak width of 15 s, and m/z 355.1476 with 20 s) in a
labeled urine sample (see Supporting Information Figure S1).
For metabolite identification, an AB Sciex QTRAP 2000

hybrid triple-quadrupole with a linear ion trap mass
spectrometer (Toronto, ON, Canada) was used to collect the
MS/MS spectra of the interesting metabolites. The same LC
system and column as those used in FTICR−MS were
connected to this QTRAP MS.

Data Analysis

The LC−MS raw data were first converted to netcdf format
using Bruker software DataAnalysis 4.0. The publicly available
software XCMS34 was used for peak picking. The XCMS
parameters were set as fwhm = 3 and step = 0.005, sn = 1. An
in-house written R program was used to find the 12C-/13C-
isotopic pairs based on the mass difference of 2.00671 Da of
isotopic pairs and the mass accuracy tolerance of 2 ppm. The
relative ion intensity of 12C-labeled/13C-labeled pairs was
calculated. The redundant peaks such as natural isotopic
peaks, sodium adduct peaks, potassium adduct peaks, ammonia
adduct peaks, dimer peaks, doubly charged peaks, and triply
charged peaks were automatically removed by the program. We
applied a threshold filter to remove noise peaks according to
the background mass peak intensities. An in-house written Perl
program was used to align or group the LC−MS data across the
different urine samples, which was based on the mass accuracy
tolerance of 5 ppm and retention time shift tolerance of 15 s.
The table resulting from the Perl program contained the rows
which were the individual samples and the columns which were
the unique metabolites and their relative ion intensity between
the individual sample and the pooled sample (i.e., peak ratios of
12C-labeled/13C-labeled pairs). The peak ratios of an individual
sample were normalized to the total relative ion intensity to
account for the urine volume dilution difference.
Multivariate statistical analysis of the LC−MS data was

carried out using SIMCA-P+ 11.5 (Umetrics AB, Umea,
Sweden). Principal components analysis (PCA), partial least-
squares discriminant analysis (PLS-DA), and orthogonal
projections to latent structures discriminant analysis (OPLS-
DA) were used to analyze the data. Twenty permutation test
and CV-ANOVA, built in SIMCA-P, were used to conduct
cross validation for the PLS-DA and OPLS-DA models. A list of
interesting metabolites that contributed mostly to the model
was generated from the VIP list. The MetaboAnalyst35 software
was used to do the t test for the individual metabolite.

Metabolite Identification

Accurate mass of an underivatized metabolite was obtained by
subtracting the measured mass of the dansylation labeled
metabolite to the mass of the dansyl group. Based on the
accurate mass information, the Human Metabolome Database
(HMDB)36 and the Evidence-based Metabolome Library
(EML)37 were searched using MyCompoundID,37 with a
mass accuracy tolerance of 5 ppm, to generate a list of mass-
matched putative metabolites from the ion pairs detected. For
positive metabolite identification, MS/MS spectra of the
significant metabolites found to be differentially expressed in
two groups were generated and manually interpreted. A
metabolite was deemed to be definitively identified if the
MS/MS spectrum and retention time matched with those of an

Figure 1. Experimental workflow of isotope labeling LC−MS for
comparative metabolomics of mouse urine.
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authentic standard. A metabolite was considered to be
putatively identified if there was no authentic standard available.

■ RESULTS AND DISCUSSION

Mouse Model

Metabolomics has been applied to biomarker discovery in both
human studies and animal studies. However, some confounding
factors such as diet, environment and genetics can cause
significant individual variability in human studies which
complicate the biomarker discovery process.38 On the other
hand, animal models enable a much more controlled study and
minimize the effects of confounding factors.39 For studies of
AD, an animal model would be expected to be particularly
useful for identifying or generating a set of candidate markers
that could be extended to human studies. Many transgenic
mouse models of AD have been constructed based on the
amyloid cascade hypothesis.40,41 Amyloid beta (Aβ) plaque is
one of the major pathophysiological features of AD. Aβ is the
peptide fragment cleaved from an amyloid precursor protein
(APP) by secretases. It aggregates extracellularly to form Aβ
plaques, leading to neurodegeneration through a number of ill-
defined neurotoxic mechanisms. Several transgenic mouse
models expressing human mutant APP have been shown to
develop amyloid plaque pathology and dense core plaques.42

The TgCRND8 transgenic mouse model used in this study
expresses a double mutant form of human APP 695 isoform
and develops amyloid deposits as early as 2−3 months.43

Therefore, the TgCRND8 transgenic mouse model allows one
to perform AD biomarker discovery in a relatively short time
period.
As Table 1 shows, we collected the urine samples at the ages

of 15−17, 25−28, and 30−31 weeks to represent different
stages of disease development. In this study, we did not collect
the samples during the early development amyloid deposits
during 8−12 weeks. Our cumulative studies with this Tg mouse
line mimicking early onset familial AD (FAD) are that plaques
can be seen from 65 days onward but multiple plaque deposits
are present reliably but sparsely at 12 weeks of age, in accord
with the description in Chishti et al.,43 for example, more than
one plaque deposit per sagittal section near the midline. This
finding has not altered in moving our colony from one
university to another and using (necessarily) slightly different
conditions of husbandry. In this initial study to profile
metabolites, we chose to start at a slightly “conservative” time
point with respect to this model, that is, ∼4−6 weeks after the
first documented chemical changes (plaque deposits, jump in
Abeta levels detected by immunoblot or ELISA). Nonetheless,
while future studies might assess our mice at yet earlier time-
points, we note that gray matter Aβ deposition caused by FAD
mutations is not associated per se with fulminant clinical
disease; instead it reflects a preclinical event occurring about 15
years before symptom onset and about 10 years before onset of
global cognitive impairment detected by mini-mental-state
examination.44 In short, our first time point can already be
considered to equate to a preclinical state in the context of
FAD.
Metabolome Profiling Method

The workflow of our quantitative metabolomics method for
urine metabolomic biomarker discovery in a transgenic mice
model is shown in Figure 1. This method is based on
differential 13C-/12C dansylation labeling that was previously
developed in our group. The method was able to detect and

quantify over 600 metabolites in human urine in a single LC−
MS run.26 However, unlike human urine samples, the volume
of mouse urine that can be conveniently collected without
significant contamination from the environment is often
limited. Collection of 20−50 μL per animal at a given time
point is possible by removing mice from their home cage and
placing them into a new disposable cage. This method does not
cause any contact of urine on any surface inside the animal cage
and thus prevents feces, food, and other species from
contaminating the sample. The freshly collected urine sample
can also be frozen immediately for storage, reducing the risk of
bacterial growth and degradation of metabolites.
To handle the small volume of mouse urine (e.g., 10 μL), it

was necessary to optimize the LC−FTICR−MS settings in
order to achieve better detection of metabolites, as well as the
dansylation labeling protocol. In this work, a 1 mm LC column,
instead of a 2.1 mm column, was used, which could
theoretically lower the detection limit by 4-fold. In addition,
the ion accumulation time for data collection was optimized to
be 1 s, instead of shorter time (e.g., <0.5 s). The limit of
detection for the optimized LC−FTICR−MS method was
found to be 0.24 nM for the dansylated phenylalanine. In the
reported protocol,26 dansylation labeling reaction requires a
relatively large volume of sample, that is, 50 μL. It was found
that merely scaling down the reaction volume from 50 to 10 μL
could cause great variations in the mass spectrometric results,
likely due to inhomogeneity of the reaction solution when 10
μL of urine was used. Instead, we diluted the mouse urine from
10 to 50 μL and kept all the reagent solution volumes the same
as those used in the reported protocol. The detection of
metabolome coverage was not compromised even when we
started from 10 μL mice urine sample, since we have improved
the limit of detection of the LC−MS method.
In our workflow, 20 μL of mouse urine was initially divided

into two halves, with one half labeled by 12C-dansylation and
the other half combined with others to form a pooled sample
that was labeled by 13C-dansylation. Generally speaking, we
could detect more than 950 unique ion pairs or putative
metabolites in the mixture of the differentially labeled mice
urine sample. Many of them could match with the metabolites
in HMDB and EML, based on accurate mass search using 5
ppm mass error tolerance. For example, for the eight QC
injections from the pooled sample, Supporting Information
Table T1 shows the summary of the match results. Supporting
Information Tables T2 and T3 list all the matches of the peak
pairs to the HMDB and EML metabolite libraries, respectively.
For the eight injections, the average number of peak pairs
found was 1082 ± 148 (the peak pair number was lower for the
first injection, likely due to insufficient conditioning of the
column). There were a total of 1454 peak pairs detected from
the combined results. About 92% of them could match with the
metabolites in the two libraries. It is clear that our method can
provide much better submetabolome coverage than a conven-
tional LC−MS method. For example, 1942 features were
detected in mouse urine in one study using UPLC−MS for
metabolome profiling,45 while another study reported the
detection of 1412 features.46 Since only a fraction of the
features (less than 20%)45 were actually from the true
metabolites, these studies detected less than 400 metabolites.
Among them, we would expect that only a fraction of them
were from amines and phenols. In contrast, in our work, we
routinely detected over 950 putative amine- and phenol-
containing metabolites. However, the dansyl labeling LC−MS
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method described in this work only detects the amine/phenol
submetabolome. For detecting other groups of submetabolome,
different labeling methods need to be used.47

Besides metabolite detectability, analytical variation of a
global metabolomic profiling method should be minimized for
biomarker discovery work, as a large analytical variation can
mask the true biological variation between the disease state and
the control state. We have evaluated the interday repeatability
of our method using the pooled QC sample. Figure 2A shows
the overlaid base-peak chromatograms of eight injections of the
QC sample within 4 days. For these chromatograms, the
maximum retention time shift within 4 days was less than 15 s.
We randomly chose three metabolites from eight quality
control samples to represent the relatively high, medium and
low abundant metabolites, respectively. Supporting Information
Table T4 shows that the retention time shift for these three
different metabolites was 4.5, 1.1, and 12 s. The relative
standard derivation (RSD) of the retention time was 0.15%,
0.04%, and 0.3%, respectively. We also evaluated the variation
of the mass measurement within 4 days. The mass shift was 2.5,
1.4, and 1.1 ppm for these three different metabolites. These

results indicate the FTICR−MS mass measurement with
external calibration was quite stable within 4 days.
We calculated the RSD of the peak ratios individually for the

840 metabolites that were commonly detected in the eight
injections, and the mean RSD was found to be 6.1% and the
median RSD was 5.0%. Figure 2B shows the histogram of the
frequency distribution of RSD% for the 840 metabolites. More
than 96% metabolites have RSD% less than 15%, which was
much better than the previously reported data using a label-free
LC−MS method.48,49 The better interday repeatability of our
method is mainly due to the fact that we used 13C-labeled
pooled sample as a global internal standard, which could
minimize the variations for the injection volume, electrospray
response, instrumental settings, etc. We also investigated the
experimental repeatability by running 3 replicates of
dansylation reaction of a mouse urine sample (see Supporting
Information Figure S2 for the overlaid base-peak ion chromato-
grams). The RSD% of peak ratios for all commonly detected
metabolites was calculated. The mean RSD was 10.7%, and the
median RSD was 7.4%. These results indicate that, despite the
use of a small volume of urine sample (10 μL for labeling),

Figure 2. (A) Interday repeatability of overlaid base peak chromatograms of eight injections of quality control (QC) samples during 4 days LC−MS
running; (B) frequency histogram of RSD% relative intensity of 840 metabolites in the QC samples.
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good reproducibility could be obtained by the isotope labeling
LC−MS method.
Note that the differential isotope labeling LC−MS method is

for relative quantification of metabolites in comparative
samples. If needed, spiking a labeled metabolite standard with
known concentration to a differentially labeled sample can be
used for absolute quantification. However, for most metab-

olomics studies, determining the metabolic changes or relative
quantification of metabolites is more important. Differential
isotope labeling LC−MS uses peak ratio values of peak pairs to
perform relative quantification which is more precise than using
absolute signal intensity of peaks. For example, we randomly
selected three metabolites (high, middle, and low abundant
metabolites) in the eight quality control samples. Supporting

Figure 3. (A) PCA score plot of all the mice urine samples. Green dots were the eight injections of the quality control sample. Red boxes were
labeled as mutant APP mice, and blue triangles were labeled as wild type mice. (B) PLS-DA score plot of all the mice urine samples. Red boxes were
labeled as mutant APP mice, and blue triangles were labeled as wild type mice. R2Y(cum) was 0.719, and Q2(cum) was 0.516. (C) OPLS-DA score
plot of all the mice urine samples. Red boxes were labeled as mutant APP mice, and blue triangles were labeled as wild type mice. R2Y(cum) was
0.854, and Q2(cum) was 0.665.
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Information Table T4 shows that the RSD of the absolute
intensity of these three metabolites was 14%, 30%, and 28%. In
contrast, the RSD of the relative intensity (12C/13C ratio) of the
three metabolites was 2.4%, 1.9%, and 3.9%.

Comparative Metabolome Analysis in Mouse Model of AD

PCA, an unsupervised chemometric method, was used to
obtain an overall picture of the whole data sets, and to see if
there was any clustering, trends, or outliers. Figure 3A shows
the PCA score plot of all the urine samples labeled as QC
samples (in green), APP mutant group (in red), and wild type
group (in blue). The eight QC injections cluster together
closely, indicating that our method was sufficiently robust that
the quality of the whole LC−MS data for this study should be

satisfactory.50 Figure 3A shows that there is a separation
between APP mutant and wild type groups, although the
separation is not distinct. If we label the samples as male and
female (see Supporting Information Figure S3), there is a clear
separation between male and female mouse urine samples,
which is consistent with the previous report.51

In order to maximize the separation between the APP
mutant and wild type groups, we need to input a priori
information about the two classes and use the supervised
models, such as PLS-DA and OPLS-DA.52,53 Figure 3B shows
the PLS-DA score plot of urine samples between APP mutant
and wild type groups. There is a clear separation between APP
mutant and wild type groups, although there are a few
overlapping data points between the two groups. OPLS-DA

Figure 4. Score plots of OPLS-DA at (A) the age of 15−17 weeks, (B) the age of 25−28 weeks, and (C) the age of 30−31 weeks.
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removes the unrelated variation in the data sets, such as gender
in this case. Figure 3C shows that the OPLS-DA model could
discriminate the APP mutant group from the wild type group.
R2 is used to evaluate the goodness of fitting, while Q2 is used
to evaluate the goodness of prediction. The OPLS-DA had R2Y
and Q2Y values larger than 0.5, suggesting that it was a robust
and predictable model (R2Xcum = 0.513, R2Ycum = 0.854, Q2Ycum

= 0.665 for one predictive component and three orthogonal
components). We did the cross validation for the PLS-DA and
OPLS-DA models. Supporting Information Figure S4 shows
the 20 permutation test for PLS-DA model. The slopes of both
R and Q are positive and permutation data in the left are lower

than the original point on the right top, which suggests that the
model was valid. The CV-ANOVA, a built-in cross validation
method in SIMCA-P, was used to do the cross validation of the
OPLS-DA model, and it showed the model was robust (data
not shown).
Since the mouse urine samples were collected at three

different time points, we also divided the data into three
individual time points and performed the OPLS-DA analysis.
Figure 4 shows that the OPLS-DA can separate the APP
mutant group and the wild type group in each of three time
points. The separations between the APP mutant and the wild
type group at 25−28 weeks and at 30−31 weeks are similar (Q2

Figure 5. Prediction model showing the metabolic trajectory of three time points among the APP mice.

Table 2. List of Top 15 Important Metabolites Found in the Mouse Urine Samples That Differentiated the APP Mutant Group
and the Wild Type Group

ret. time
(min)

mass of dansylated
metabolite

mass of
metabolite metabolite

mass accuracy
(ppm) IDa

fold
change

t test
(p-value)

21.48 400.12156 166.06323 desaminotyrosine 1.4 D 2.20 10−5.6

12.47 337.15813 103.09980 choline 0.9 D −2.00 0.00033
14.33 383.10911 149.05078 L-methionine 1.8 D 1.81 0.0028
18.71 425.11673 191.05840 5-hydroxyindoleacetic acid 0.8 D −1.80 0.0010
2.91 359.07268 125.01435 taurine 2.5 D −1.70 0.0090
20.98 327.64260 187.16853 N1-acetylspermidine 0.4 D −1.50 0.0014
27.90 330.59553 193.07439 phenylacetylglycine or methylhippuric

acid
2.5 P 2.20 0.00045

16.87 348.10153 114.04320 dihydrouracil 2.3 P 2.19 10−6.0

12.22 366.11202 132.05369 ureidopropionic acid 1.4 P 1.94 10−5.5

15.67 401.06614 167.00781 thiocysteine 1.9 P 1.82 0.0050
26.71 317.58747 167.05828 hydroxyphenylglycine or pyridoxal 0.2 P −1.60 0.00027
6.66 479.23249 245.17416 lysine-valine 1.1 P −1.55 0.00034
28.14 341.06009 214.00353 unknown 2.35 0.0014
26.47 309.09803 75.03970 unknown 2.07 0.00012
9.42 362.11708 128.05875 unknown 2.00 0.00015

aD = definitely identified; P = putatively identified.
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= 0.75), and they both are more pronounced than that at 15−
17 weeks (Q2 = 0.40). This observation can be explained by the
phenotype change of amyloid plaques in the APP mutant
mouse brain with time. The amyloid plaques appear as early as
2−3 months and become more dense at 6 months.43,54

We have also constructed a prediction model in a 3D plot to
trace the progression of three time points (three groups)
among the APP mice samples (see Figure 5). Figure 5 shows
that there is a clear metabolomic trajectory changing from 15−
17 weeks, to 25−28 weeks, and to 30−31 weeks. The changes
from 15−17 weeks to 25−28 weeks are more pronounced than
that from 25−28 weeks to 30−31 weeks.

Identification of Candidate Metabolite Biomarkers

Metabolite identification is a challenging and time-consuming
process.38 We focused on a relatively short list of candidate
metabolites for identification. The top 15 most important
metabolites were selected from the loading plot based on their
variable importance in the project value and they were also
validated by Student’s t test. Table 2 shows a list of these top 15
metabolites with their retention time, accurate mass of
dansylated metabolite, accurate mass of underivatized metab-
olite, mass accuracy error, fold change, and p-value. The use of
high resolution and high mass accuracy FTICR−MS permitted
the use of a small mass error tolerance window, 5 ppm, to
perform mass search in a metabolome database and gave us a
relatively short list of possible hits. Furthermore, the MS/MS
spectrum was used to facilitate the identification of the
potential metabolites. As an example, Figure 6 shows the
MS/MS spectra of 12C-danyslated and 13C-dansylated methio-
nine in the mouse sample matched with those of the reference
standard.
In this work, methionine, desaminotyrosine, taurine, N1-

acetylspermidine, 5-hydroxyindoleacetic acid, and choline were
definitely identified. Dihydrouracil, lysine-valine, thiocysteine,
and ureidopropionic acid were putatively identified. The
remaining significant metabolites could not be identified.
Figure 7 shows the change of relative concentration level of
some metabolites in the APP mutant group and the wild type
group at three different ages of 15−17 weeks, 25−28 weeks,
and 30−31 weeks. We can see that methionine and
desaminotyrosine are upregulated and N1-acetylspermidine
and 5-hydroxyindoleacetic acid are downregulated in the APP
mutant group. They show some differences among the three
different ages within the wild type group, but these metabolites
show more significant differences from the APP mutant group.
The differences between the APP mutant and the wild type
group for all these metabolites at each three different ages are
statistically significant, and the p-values are all <0.001.

Significance of Candidate Metabolite Biomarkers

The metabolomic profile changes as shown in Figures 4 and 5
and the relative concentration changes of individual metabolites
as shown in Figure 7 are significant for understanding the AD
disease development. The metabolomic changes between the
APP mutant group and the wild type group may be used in the
future to examine the efficacy of a treatment at any time point
of the disease development; a reversal of metabolomic changes
to the normal control would indicate that a treatment could
reverse the disease development process. In addition, if some of
the metabolite biomarkers are transferable to human samples,
they could potentially be served as biomarkers for disease
diagnosis or monitoring therapeutic efficacy in human. The

biological significances of the potential metabolite biomarkers
found in this mouse model study are briefly discussed below.
Methionine is an essential amino acid containing sulfur,

which mouse could not synthesize. Homocysteine also
containing sulfur is an intermediate product in the methionine
metabolism pathway. The elevated level of blood plasma
homocysteine was reported to be associated with high risk of
AD.55,56 A methionine-rich diet could cause high level of
plasma homocysteine, which resulted in the acceleration of
brain Aβ accumulation in the APP mutant mouse.57 In
methionine metabolism pathway, methionine can be converted

Figure 6. MS/MS spectra of (A) 12C-dansylated methionine standard,
(B) 12C-dansylated methionine in the mouse urine sample, (C) 13C-
dansylated methionine standard, and (D) 13C-dansylated methionine
in the mouse urine sample.
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to S-adenosylmethionine (SAM), which serves as ubiquitous
methyl group donor and is necessary for the synthesis of
neurotransmitters, neuronal membrane stability, and DNA
methylation. A decreased level of SAM in CSF was reported to
be associated with the AD patients.58 Methionine is also
required for synthesis of cysteine, and the sulfur atom from
methionine is transferred to cysteine. We also observed that a
putatively identified metabolite thiocysteine were upregulated
in the mutant APP mice. Thiocysteine was an intermediate
product in the cysteine metabolism pathway. In this study, we
observed that the methionine and cysteine metabolism was
disturbed, which provided evidence that methionine and
cysteine metabolism pathway warrant further investigation for
AD transgenic mice model. Interestingly, one recent metab-
olomics study in human CSF also showed that the methionine
level was significantly increased in AD patients.17 These results
suggest that the methionine related pathway may play an
important role in the pathophysiology of AD.

Taurine is also a sulfur amino acid, which can be synthesized
by human body from cysteine. Taurine has many diverse
biological functions serving as a neurotransmitter in the brain, a
stabilizer of cell membranes, and a facilitator in the transport of
ions. Recently, it was reported a relative decrease in the
concentration of taurine in the frontal cortex and midbrain of
the TgCRND8 APP 695 transgenic mouse, compared to the
control.20 Another recent study also reported reduction of
taurine concentration in the Tg2576 AD in a mouse model.32

In a study of human saliva metabolomics, it was found that
taurine level was reduced in patients with mild cognitive
impartment (MCI), a disease related to AD.29 Consistent with
previous studies, in our study we observed a decreased level of
taurine in the mutant APP mouse urine samples.
The relative concentration of desaminotyrosine was

increased in mutant APP mice. It is one of the phenolic acid
metabolites of tyrosine by tyrosine aminotransferase.59 There is
very little literature information on the biological function of
this metabolite. However, the tyrosine metabolism pathway is

Figure 7. Plots showing the changed relative concentration level of candidate metabolite biomarkers in the APP mutant (app) and wild type (wt)
groups at three different ages: 1 corresponds to 15−17 weeks, 2 corresponds to 25−28 weeks, and 3 corresponds to 30−31 weeks. The horizontal
dark line is the median value. The p-value of the difference between the mutant APP and wild type groups at each of three ages was calculated to be
<0.001 for these metabolites.
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important and some well-known neurotransmitters, such as L-
Dopa, dopamine, are derivatized from tyrosine. Further
investigation of desamiontyrosine is needed to find out what
role it plays in the metabolite pathway related to AD disease.
N1-Acetylspermidine is one of aliphatic polyamines occur-

ring ubiquitously in organisms. Polyamines have important
functions in the stabilization of cell membranes, biosynthesis of
informing molecules, and cell growth and differentiation.
Reduced concentration of N1-acetylspermidine was previously
reported in the urine of AD patients by a traditional
biochemical study method.60 In our work, a reduced level of
N1-acetylspermidine in the transgenic mouse model of AD was
observed.
5-Hydroxyindoleacetic acid is a metabolite of serotonin

which is one of the important neurotransmitters in the brain.
Neurotransmitters react with receptors in the postsynaptic
membrane, thereby activating the neuron and transmitting the
signal. The concentration changes of several neurotransmitters
including serotonin were implicated in AD.61 Although there
was no change observed in the human brain tissue, a decreased
level of 5-hydroxyindoleacetic acid in human CSF samples was
reported to be associated with AD by traditional biochemistry
study.62,63 One recent metabolomics study also showed that 5-
hydroxyindoleacetic acid was dysregulated in human CSF
samples of AD patients.13 In this work, we observed that 5-
hydroxyindoleacetic acid level was changed in the APP mutant
urine samples, which provides further evidence that serotonin
metabolic pathway is likely to be associated with the pathology
of AD.
Choline is an important metabolite since it serves as a

precursor of acetylcholine, as a methyl donor in various
metabolic processes. We found that the level change of choline
may be involved in AD. Our result was also in agreement with
another recent metabolomics study in human CSF samples, in
which they identified choline as a potential disease progress
biomarker.25

The findings of these potentially biological relevant
metabolites, as discussed above, demonstrated that our
metabolomic profiling method could be useful in untargeted
metabolomic biomarker discovery. In addition, some candidate
metabolites, such as methionine, 5-hydroxyindoleacetic acid,
choline, and taurine, identified in this mouse model study are in
agreement with previous metabolomics studies in human CSF
and blood samples. Although urine is not in close proximity to
brain tissue, it might reflect the systems body response to AD.
Urine metabolomics may have potential to be a noninvasive
diagnostic tool for AD. Furthermore, urine metabolomics may
also be used to assess the therapeutic intervention for the
management and treatment of AD, particularly at the early
stage of the disease development.

■ CONCLUSIONS
We have developed a new LC−MS method for analyzing the
mouse urine metabolome with much improved metabolome
coverage. This method allowed us to detect and quantify more
than 950 metabolites in mouse urine samples using a starting
material of 20 μL. From eight LC−MS runs of the quality
control sample prepared from a pooled urine sample, a total of
1454 peak pairs could be detected and 92% of them could
match with the metabolites in either the HMDB database or
the EML library based on accurate mass search. Urinary
metabolomic study on a transgenic mice model of AD showed
that metabolomic profiles could differentiate the mutant APP

from the wild type mice. Several metabolite candidate
biomarkers identified in this work were consistent with
previous metabolomics study in human CSF. Our study
indicated that, complementary to CSF, brain, and plasma,
urine has the potential to be used to search for noninvasive,
inexpensive, sensitive metabolic biomarkers for AD disease
diagnosis and also therapeutic effect monitoring.
One of the limitations in this study is that dansylation

labeling mainly enhanced the detection of the compounds
containing primary, secondary amines and phenol groups, but it
could not detect some other class of compounds like glucose
and fatty acids, which might be interesting to AD. This
limitation will be overcome by using other isotopic labeling
reagents. For example, isotope-coded p-dimethylaminophenacyl
bromide can be used to detect compounds containing
carboxylic groups.47 We plan to apply these newly developed
labeling methods to comprehensively study the mouse urine
metabolome in order to obtain the whole picture of metabolic
perturbations in the transgenic mouse of AD (i.e., detecting
more metabolites in each metabolic network) for better
understanding of the disease and searching for more specific
and sensitive biomarkers for early diagnosis of AD.
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