
Counting Missing Values in a Metabolite-Intensity Data Set for
Measuring the Analytical Performance of a Metabolomics Platform
Tao Huan and Liang Li*

Department of Chemistry, University of Alberta, Edmonton, Alberta T6G2G2, Canada

*S Supporting Information

ABSTRACT: Metabolomics requires quantitative comparison
of individual metabolites present in an entire sample set.
Unfortunately, missing intensity values in one or more samples
are very common. Because missing values can have a profound
influence on metabolomic results, the extent of missing values
found in a metabolomic data set should be treated as an
important parameter for measuring the analytical performance
of a technique. In this work, we report a study on the scope of
missing values and a robust method of filling the missing
values in a chemical isotope labeling (CIL) LC-MS
metabolomics platform. Unlike conventional LC-MS, CIL
LC-MS quantifies the concentration differences of individual metabolites in two comparative samples based on the mass spectral
peak intensity ratio of a peak pair from a mixture of differentially labeled samples. We show that this peak-pair feature can be
explored as a unique means of extracting metabolite intensity information from raw mass spectra. In our approach, a peak-pair
peaking algorithm, IsoMS, is initially used to process the LC-MS data set to generate a CSV file or table that contains metabolite
ID and peak ratio information (i.e., metabolite-intensity table). A zero-fill program, freely available from MyCompoundID.org, is
developed to automatically find a missing value in the CSV file and go back to the raw LC-MS data to find the peak pair and,
then, calculate the intensity ratio and enter the ratio value into the table. Most of the missing values are found to be low
abundance peak pairs. We demonstrate the performance of this method in analyzing an experimental and technical replicate data
set of human urine metabolome. Furthermore, we propose a standardized approach of counting missing values in a replicate data
set as a way of gauging the extent of missing values in a metabolomics platform. Finally, we illustrate that applying the zero-fill
program, in conjunction with dansylation CIL LC-MS, can lead to a marked improvement in finding significant metabolites that
differentiate bladder cancer patients and their controls in a metabolomics study of 109 subjects.

Missing intensity values is common in a multiple-sample
data set generated by an “omics” analytical tool for

genomics, proteomics, and metabolomics applications.1−6 One
of the major roles of an omics study is to find genes, proteins,
or metabolites that have significant differences in different
biological groups (e.g., healthy vs diseased samples). Analytical
tools are used to generate a rectangular matrix or table
containing an intensity (or quantity) value in each sample
column that is associated with an individual gene, protein, or
metabolite in a row. Missing values in the table can cause
problems in performing a statistical calculation.7 Genomics and
proteomics researchers have devoted a considerable amount of
effort to understand and develop appropriate methods to
handle the missing data.1−3,8−13 There is an increasing
awareness of this problem in the field of metabolomics, and
several papers have been published on this topic,4−6,14−22

including the development of statistical tools to fill the missing
values or simply disregard all the features with missing data.
However, filling the missing values nonexperimentally needs to
be carefully performed.5,6,22 There are debates on whether
missing values should be filled and, if so, how best the missing
values are filled (e.g., should we use the lowest intensity or a

mean of all the measured values in a data set to fill the missing
values?).18−20

We echo the view of a growing number of researchers on the
importance of dealing with missing values properly in
metabolomics. In our view, an effective approach to tackle
the problem is from the experimental side, i.e., developing and
applying robust analytical tools to profile the metabolomes of
many samples with the least number of missing values. In an
ideal situation, there should be very few missing values if a
metabolomic technique is capable of detecting and quantifying
all the metabolites; missing values would only indicate the true
absence of the metabolites due to biological reasons. However,
because of technical limitations of current analytical methods,
the extent of missing values can be quite large, even in a
replicate data set of the same sample where metabolite
concentrations should be the same. In the case of LC-MS
based metabolomics research, low-concentration or not-easily
ionizable metabolites may not be detected due to a detection
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sensitivity issue or ion suppression effect. In addition, data
processing including peak picking may cause the loss of peak
intensity information.18,22,23 There are several metrics including
detection sensitivity, technical precision, quantification accu-
racy, and the number of detectable metabolites that have been
routinely used to measure the analytical performance of a
metabolome profiling technique.24−26 We feel that the extent of
missing values should be considered as another important
parameter for gauging the performance of a method. In other
words, the number of missing values should be reported, like
the number of metabolites profiled, as a criterion to gauge the
quality of a data set.
In this work, we report an investigation of the issue of

missing values in a chemical isotope labeling (CIL) LC-MS
metabolomics platform. In high-performance CIL LC-MS, the
isotope labeling reagents are rationally designed to improve
both LC separation efficiency and MS detection sensitivity
significantly.27−34 For example, dansylation, targeting the
amine/phenol submetabolome, allows the detection of labeled
metabolites with a sensitivity improvement of 10- to 1000-fold
over the unlabeled counterparts.27 With the ability of detecting
thousands of putative metabolites from an individual sample
(e.g., human urine) by using this platform, an important
question rises as to how well we can profile them consistently
in multiple samples, as metabolomics requires analyzing many
samples of usually the same type, not just one sample. To this
end, we have developed a data processing workflow that
explores a unique feature of peak-pair picking from mass
spectra generated by differential CIL LC-MS in order to fill the
missing values in a multiple-sample data set. This method
allows a significant reduction of missing values, enabling
determination of a greater number of significant metabolites
that separates different groups of samples, a common goal of
many metabolomics studies in disease biomarker discovery and
systems biology. To facilitate method comparison in terms of
missing values, we propose a standardized approach of counting
missing values in a replicate data set as a way of gauging the
extent of missing values for a given analytical method.

■ EXPERIMENTAL SECTION
Dansylation Labeling. 12C-dansyl chloride for metabolite

labeling was purchased from Sigma-Aldrich Canada (Markham,
ON, Canada). 13C-dansyl chloride was synthesized in our lab.27

The labeling reaction was performed according to a protocol
reported previously.34

LC-MS. The 12C- and 13C-labeled samples were mixed and
centrifuged at 20 800g for 10 min before injecting into a Bruker
Maxis Impact QTOF mass spectrometer (Billerica, MA, USA)
linked to an Agilent 1100 HPLC system (Palo Alto, CA, USA).
A reversed-phase Zorbax Eclipse Plus C18 column (2.1 mm ×
100 mm, 1.8 μm particle size, 95 Å pore size) from Agilent was
used. Solvent A was 0.1% (v/v) formic acid in water with 5%
(v/v) ACN, and solvent B was 0.1% (v/v) formic acid in ACN.
The gradient elution profile was as follows: t = 0.0 min, 20% B;
t = 3.5 min, 35% B; t = 18.0 min, 65% B; t = 24 min, 99% B; t =
28 min, 99% B. The flow rate was 180 μL/min. The sample
injection volume was 2 μL.
Zero-Fill Program. The LC-MS data generated were first

processed using a peak-pair picking software, IsoMS.35 The
level 1 peak pairs35 were aligned from multiple runs by
retention time match within 30 s and accurate mass match
within 5 ppm to produce a CSV file. The zero-fill program was
then used to fill the missing values in the CSV file. This

program was written in R and is freely available from www.
mycompoundid.org.36

In zero-fill, finding the missing value of a peak pair in the raw
data of a sample uses information on retention time (rt), m/z
value (mz), and absolute intensity (int) of the 13C-peak of the
pair. The 13C-peak is from a controlled sample (e.g., a 13C-
labeled pooled sample) that is spiked into all the 12C-labeled
individual samples. Thus, the absolute intensity of this peak for
a given labeled metabolite should be theoretically the same in
mass spectra of all the samples. A matching score is used to find
the peak pair based on similarities of these three parameters. It
is defined as
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The default rt tolerance (tol) is 30 s, and the default mz
tolerance is 5 ppm. A different weight (divided by 2 or 4) is
assigned to each of the similarity equations in the score
function; mz is deemed to be more important than rt and int
and therefore given more weight. We tested different weighing
factors and found these were most appropriate to generate the
optimal results. If the matching score is larger than 0.6, it will be
considered as a match. This scoring algorithm was developed
using several metabolomic data sets where missing values in
metabolite-intensity tables had been manually picked from the
raw data.

Statistical Analysis. Multivariate statistical analysis was
carried out using SIMCA-P+ 12 (Umetrics AB, Umea,
Sweden). Volcano plot was plotted using Origin 8.5.

■ RESULTS AND DISCUSSION
IsoMS and Missing Values. Figure 1 shows the workflow

for processing CIL LC-MS data. IsoMS is used to perform peak
picking, peak pairing, peak-pair filtering, and peak intensity
ratio calculation.35 Using IsoMS-align script, information on the
peak pair IDs and their peak intensity ratios from multiple LC-
MS runs is extracted to produce a CSV file. In picking the peak
pairs, IsoMS classifies the peak pairs into three groups, namely,
level 1, 2, or 3.35 Level 1 peak pairs are the most confident pairs
where the 13C-natural-isotope peaks are accompanied by the
light- and heavy-chain labeled metabolite peaks within a pair.
Level 2 peak pairs miss one of the 13C-natural-isotope peaks.
Level 3 peak pairs are the least confident pairs with both 13C-
natural-isotope peaks missing. To reduce the extent of false
positive peak pairs found by IsoMS, only level 1 peak pairs are
retained in the metabolite-intensity table. In doing so, the false
positive rate (FPR) is usually less than 5%.
Inspecting the metabolite-intensity table generated by IsoMS,

it is apparent that there are many missing values in the table
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from a multiple-run data set, even in replicate runs of the same
sample. As an example, Figure 2A shows a distribution of the

number of peak pairs found in 12C-/13C-dansyl labeled human
urine samples (i.e., experimental triplicate runs of the same
urine). Among the 1549 peak pairs found in run 1 and run 2,
960 pairs or 62% are in common. Comparing run 1 and run 3,
944 out of 1540 pairs (61%) are in common. There are 971
common pairs out of 1516 pairs (64%) found in run 2 and run
3. As the sample number increases, the number of commonly
detected metabolites decreases (see below). In metabolomics
work, it is common to use a criterion such as the 50% rule to
retain the metabolites with missing intensity values in no more
than 50% of the samples for statistical analysis. Currently, there
is no consensus on what this percentage limit should be.5,6,22

Missing values in replicate runs are mainly caused by
technical and data processing limitations. To reduce the
number of missing values, measurement should be done
using a technique that gives very high reproducibility. However,
even for a very reproducible technique, data processing can be
the limiting factor. In processing LC-MS data (with or without
CIL), because of the need to balance the sensitivity and
specificity in peak picking and intensity measurement, some
low-abundance peaks or other peaks not meeting a set of
criteria in the peak picking algorithm are missing in the
metabolite-intensity table. Reanalyzing the original LC-MS data
may help fill in the missing values in the table. This can be done
manually by inspecting the original spectrum or chromatogram.
Because this is a time-consuming process, manually filling the
missing values is best done for selected metabolites that have
already been found to be significant in statistical analysis of the
initial metabolite-intensity data file. However, this approach will
not alter the initial metabolite-intensity table used to perform
statistical analysis for finding the significant metabolites in the
first place. Alternatively, an algorithm may be developed to
automate the reanalysis process to detect and fill the missing
values (i.e., zero-fill). However, this is not easy to implement
due to the fact that it is often difficult to differentiate the
metabolite peaks from the background peaks when the signal
intensity is very low, even with a high resolution instrument.
Solvents, impurities, salts, etc., and their multimers and clusters
can produce many peaks at the low mass region (m/z < 300)
where a large portion of metabolite ions are detected.

Zero-Fill Program. CIL LC-MS offers an opportunity to
overcome the difficulty of implementing an automated zero-fill
process. In CIL LC-MS, the metabolite ion mass is shifted to a
higher mass (m/z > 300) by adding the labeling group (e.g.,
+234.0583 Da for a dansyl labeled metabolite). This reduces
the extent of background interference. More importantly, all the
metabolite peaks in differential CIL LC-MS are detected in
pairs and thus can be distinguished from the singlet background
peaks. In addition, a 13C-labeled control sample is spiked to all
12C-labeled individual samples. As a consequence, the absolute
intensity of the 13C-peak of a metabolite peak-pair should be
similar for all the samples, providing another differentiator. We
have developed a zero-fill program to reanalyze the CIL MS
data after the initial generation of the metabolite-intensity data
file by IsoMS.
As Figure 1 shows, the zero-fill program first reads the

metabolite-intensity file and then looks for missing values
starting from the first sample run. Once a missing value is
found, it goes back to the raw MS file. On the basis of matching
retention time, m/z, and 13C-labeled-peak intensity of the
missing-value peak-pair with those in the raw MS file, the
program finds the correct 13C-peak. In the case that the 13C-
peak is not present in the raw data, the program stops the

Figure 1. Workflow for processing CIL LC-MS data that incorporates
the zero-fill program.

Figure 2. Venn diagrams of the number of peak pairs detected from
experimental triplicate analysis of 13C-/12-C-dansyl labeled human
urine samples: (A) without zero-fill and (B) with zero-fill.

Analytical Chemistry Article

DOI: 10.1021/ac5039994
Anal. Chem. XXXX, XXX, XXX−XXX

C

http://dx.doi.org/10.1021/ac5039994
http://pubs.acs.org/action/showImage?doi=10.1021/ac5039994&iName=master.img-001.jpg&w=239&h=447
http://pubs.acs.org/action/showImage?doi=10.1021/ac5039994&iName=master.img-002.png&w=239&h=125


search for the corresponding 12C-labeled peak to avoid
generating any false positive result. If the 13C-peak exists in
the raw data, the program would go ahead and search for the
12C-peak based on retention time, m/z, and intensity as well as
the fact that the 12C-peak must exist in the same mass spectrum
as the 13C-peak. Once both peaks are picked, the zero-fill
program calculates the peak intensity ratio. This ratio is entered
into the metabolite-intensity table to replace the missing value.
To distinguish the ratios determined by IsoMS and zero-fill, 2
and 9 decimal places are kept for the ratios from IsoMS and
zero-fill, respectively. This helps manual checking if needed.
Performance of Zero-Fill. We have systematically

evaluated the performance of the zero-fill program with an
objective of extracting a maximal number of peak pairs from a
multiple-run data set within an acceptable level of FPR (i.e.,
<5%). In the workflow shown in Figure 1, IsoMS is first used to
process the data set using a chosen S/N threshold for extracting
the peak pairs. The value of this threshold has a large effect on
the number of peak pairs picked by this program. Figure 3(A1−
C1) shows the total number of level 1 peak pairs, the
percentage of missing values, and FPR as a function of
threshold value used for peak-pair picking (i.e., S/N 3, 9, 15, 30
and 60). These results were obtained from an experimental
triplicate data set of dansyl labeled human urine. Figure 3(A1)
shows an overall decrease in the peak pair number as the S/N
threshold increases. The FPR level (see Figure 3(C1), without
zero-fill) does not change significantly except that it is lower at
the threshold of S/N 60 from which only the very high
abundance peaks are picked. These results indicate that IsoMS
is able to pick the level 1 peak pairs with FPR of <4% even at a
very low threshold (S/N 3). However, the numbers of peak
pairs detected using S/N 3 and 9 thresholds are similar,
suggesting that lowering the threshold from 9 to 3 cannot
increase the peak pair number anymore. Manual inspection of
the results indicates that many of the peak pairs with S/N < 9
are not belonging to the level 1 group. The plot in Figure 3(B1)
(without zero-fill) shows that the percentage of missing values

in each run decreases as the threshold increases. This is
consistent with the notion that the high abundance peaks are
more reproducible. Considering that the performance of using
S/N 9 is similar to that of S/N 3 and IsoMS data processing is
faster with S/N 9 (i.e., 5 min per run using S/N 9 vs 20 min per
run using S/N 3), we choose a threshold of S/N 9 to carry out
the IsoMS data processing to generate the initial metabolite-
intensity data file.
Applying the zero-fill program to reanalyze the triplicate data

set, the percentage of missing values drops dramatically from
26.4% to 2.5%. This can be more clearly seen in Figure 2B
where the distribution of the number of peak pairs found in the
three runs is shown. The common peak pairs found in the three
runs increases from 829 (48.9%) to 1590 (93.9%). The average
run-to-run reproducibility determined from the individual
values of 97.51% (run 1 vs run 3; 1606/1647), 97.51% (run
1 vs run 2), and 98.30% (run 2 vs run 3) is 98%, compared to
67% ± 1% without using zero-fill. Many of the retrieved values
can be manually confirmed by inspecting the peak pairs in the
raw mass spectra. In fact, with zero-fill, the FDR drops from
2.9% to 2.4% (see Figure 3(C1) at S/N 9). Thus, the zero-fill
program can retrieve missing values from the raw data very
effectively.
We have studied the performance of zero-fill in a data set

containing 10 replicate injections of the same dansyl urine
sample. Figure 3(A2) shows the number of peak pairs detected
with and without zero-fill as a function of cumulative injection
number. Without zero-fill, the cumulative number of peak pairs
increases gradually and then reaches a near-plateau after 9
injections. The percentage of missing values also gradually
reduces as more replicate data are included in the combined
runs (Figure 3(B2)). However, with zero-fill, both the total
number of peak pairs detected and the percentage of missing
values reach the plateau much faster. In fact, the results of
duplicate injections with zero-fill are similar to those of 9 or 10
injections without zero-fill (see Figure 3(A2)). Even using one
injection, 2217 peak pairs can be detected, compared to 2368

Figure 3. (A) Number of peak pairs detected, (B) percentage of missing values, and (C) FPR as a function of S/N used for IsoMS data processing of
(1) the experimental triplicate data set of labeled urine, (2) the 10-run replicate injection data set, and (3) the 30-run data set.
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peak pairs from the combined results of duplicate injections. As
Figure 3(C2) shows, with zero-fill, the FPR decreases as more
replicate data are included, while without zero-fill, the FPR
increases.
We have also analyzed the performance of zero-fill on a data

set of 30 LC-MS runs from experimental triplicate of dansyl
labeled samples with 10 injections for each sample. The results
of experimental triplicate measure the overall experimental
variations, not just instrumental variation which is gauged by
repeat injections of the same sample. Figure 3(A3−C3) shows
the plots where the x-axis represents the injection number. The
combined results of three triplicate samples from each injection
are used. For example, for injection 1, the total number of peak
pairs detected in the three samples from the first injection is
used (i.e., three LC-MS runs). For injection 2, the combined
total number of peak pairs detected in the three samples from
the first and second injections is plotted (i.e., 6 LC-MS runs).
As Figure 3(A3−C3) shows, the trends of changes in the
number of peak pairs, percentage of missing values, and FPR
are similar to the injection replicate data set shown in Figure
3(A2−C2). However, in the experimental triplicate results,
even after 10 replicate runs for each sample, there are still about
17% missing values (∼510 peak pairs) if zero-fill is not
performed (see Figure 3(B3)). These are the peak pairs with
variations caused by the sample handling process. For example,
some low abundance metabolites might be labeled with slightly
different efficiencies in the triplicate samples, which can result
in signal intensity reduction in one of the 13C-natural-isotope
peaks to a level that the peak pair is no longer belonging to the
level 1 group. In contrast, with zero-fill, the percentage of
missing values drops much faster and reaches almost zero after
two injections of each sample. Even with one injection, most of
the peak pairs from the combined results are detected (see
Figure 3(B3)).
The above results indicate that with zero-fill the number of

peak pairs detected in each run can reach a near-maximal
number even without performing replicate runs for each
sample. However, the maximal number of peak pairs detectable
within a data set is dependent on the number of runs present in
the data set. Comparing the total maximal number of peak pairs
detected in the 3-run data set (Figure 3(A1)) to the 10-run data
set (Figure 3(A2)) and the 30-run data set (Figure 3(A3)), it is
clear that the maximal number increases as the number of LC-
MS runs increases. This is understandable considering the fact
that each run adds some unique peak pairs to the total.
However, there appears to be a diminished return as the
number of runs increases beyond a certain value. For example,
using 10 runs, instead of 3 runs, the peak pair number increases
from 1700 to 2350 (i.e., 38% with a net gain of 650 pairs).
However, using 30 runs, instead of 10 runs, the pair number
increases from 2350 to 2900 (i.e., 23% with a net gain of only
550 pairs). Thus, performing replicates merely for the purpose
of increasing the peak pair number in a data set needs to be
considered within the context of instrumental time available. In
a clinical metabolomics study involving the profiling of
hundreds of samples, one may choose not to perform replicate
runs in order to save instrument time. On the other hand, for a
cellular metabolomics work where only a few samples are
profiled, it may be well justified to perform replicate runs. In
any case, with zero-fill, we can recover the missing values in a
data set very effectively and efficiently.
It should be noted that the zero-fill program reported in this

work was specifically developed for CIL LC-MS where a true

metabolite is detected as a peak pair, not a singlet peak. In
traditional LC-MS without differential isotope labeling, a low
abundance metabolite peak initially not picked by data
processing software in a mass spectrum is very difficult to be
differentiated from the noise and chemical background peaks.
Picking any peak of similar m/z and retention time for zero-fill
would run into a risk of increasing FPR.

Characterization of Missing Values. As indicated earlier,
the source of missing values in a replicate run data set is mainly
from the measurement and data processing processes which can
be influenced much more by the low abundance peaks than the
high abundance ones. We have characterized the missing values
in terms of signal intensity in the 10-run data set. While peak
ratio is used to measure the relative concentration in CIL LC-
MS, the absolute intensity of a peak is related to abundance and
detection sensitivity of the metabolite. It should be noted that
detection sensitivity of different metabolites becomes more
uniform after dansylation labeling. For example, the difference
in MS signal intensity for 17 dansyl amino acid standards is
within 1 order of magnitude, compared to more than 3 orders
of magnitude for unlabeled amino acids.27 Thus, the absolute
intensity of labeled metabolites is a good indication of analyte
abundance in a sample. Figure 4 shows a histogram of the peak

pair distribution as a function of the absolute intensity
measured by S/N. The S/N values are binned in log9 to
distribute the number of peak pairs found in each bin evenly
across the x-axis. In the low S/N bins, there are significantly
more pairs detected with zero-fill. For example, at S/N around
9−15 (i.e., 1-1.25 in log9), about 300 pairs are detected with
zero-fill, compared to 150 pairs detected without zero-fill. In
the high S/N bins, the number of peak pairs found with and
without zero-fill is similar. Thus, the zero-fill process recovers
mainly the low intensity or low abundance metabolites that fail
to detect in the first path of data analysis by IsoMS.
In terms of the reproducibility of peak ratio values in the 10-

run data set, the median and average CVs for the data set
without zero-fill were found to be 8% and 12%, respectively,
compared to 12% and 13% with zero-fill. For the filled values
alone, the median and average CVs were 14% and 15%. Thus,
zero-fill only resulted in a very small reduction in reproduci-
bility for relative quantification of metabolites.

Figure 4. Number of peak pairs as a function of log9(S/N).
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Standardization of Counting Missing Values. Because
missing values are mainly from the low abundance peaks which
are more difficult to detect reproducibly, the extent of missing
values in a data set should be a good indicator to judge the
overall analytical performance of a metabolome profiling
method. We propose to use an experimental triplicate data
set (e.g., the data shown in Figure 2) and a 10-run injection
replicate data set (e.g., the data shown in Figure 3(A2)) of the
same sample to measure the performance of a method
regarding the missing values. Although using data of different
samples would have the benefit of evaluating how well a
method quantifies the same metabolites of different concen-
trations in different samples, it requires a set of standard
samples available for method evaluation. Replicate data of the
same sample is readily generated in a lab. Using the same type
of sample (e.g., human urine), the performance of different
methods in terms of missing values can still be compared, at
least within the context of performing a metabolomics study
using this type of sample. Recent development of standard
samples such as NIST serum standard should facilitate future
work of comparing different methods, if such a standard is used
across different platforms and methods.37

Using the replicate data set, we propose that the performance
indicators be (1) number of peak pairs detected per run and the
total number of peak pairs detected within a data set (triplicate
or 10-run replicate), (2) intensity dynamic range from the
lowest absolute signal intensity giving a quantity result to the
highest absolute intensity giving a quantity result, and (3)
number of missing values and percentage of missing values in
triplicate and 10-run replicate data sets. Supplemental Tables

T1 and T2, Supporting Information, show the summary of the
results for the triplicate and 10-run data sets obtained by the
dansylation CIL LC-MS method, respectively.

Metabolomics Application. Finally, we have applied the
zero-fill program in a metabolomics study to demonstrate the
benefits of using zero-fill for disease biomarker discovery. In
this case, we applied zero-fill to a set of LC-MS data generated
from a human bladder cancer metabolomics study.38 It consists
of 109 LC-MS runs of dansyl labeled urine samples collected
from 55 bladder cancer patients and 54 controls. Individual
samples were separately labeled with 12C-danylation and then
mixed with 13C-dansylated universal metabolome-standard of
human urine. The individual 13C-/12C-labeled mixtures were
separated and analyzed using reversed-phase LC and a Bruker
9.4-T Fourier transform ion cyclotron resonance mass
spectrometer.38 Supplemental Table T3, Supporting Informa-
tion, shows the original metabolite-intensity table generated
using IsoMS from the 109 runs. Supplemental Table T4,
Supporting Information, shows the table after applying the
zero-fill program to the data set. The volcano and Orthogonal
Projections to Latent Structures-Discriminant Analysis (OPLS-
DA) plots of the data sets with and without zero-fill are shown
in Figure 5.
As Figure 5A,B shows, more significant metabolites (in red)

are detected in the volcano plot of the zero-filled data. There
are 81 metabolites with a fold change of ≥1.5 and p-value of
≤0.01 in the data set with zero-fill, compared to 65 metabolites
without zero-fill. A similar observation is found in the OPLS-
DA analysis. There are 385 significant metabolites (VIP score
of ≥1.5) found from the zero-filled data, compared to 53

Figure 5. Volcano plots of the 109-sample data set from a bladder cancer biomarker discovery study: (A) without zero-fill and (B) with zero-fill. The
red dots represent a metabolite with a fold change of ≥1.5 and p-value of ≤0.01. OPLS-DA plots of the 109-sample data set: (C) without zero-fill
and (D) with zero-fill.
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metabolites without zero-fill. Supplemental Tables T5−T8,
Supporting Information, list the significant metabolites
including 24 metabolites that were positively identified using
a dansyl standard library consisting of 280 compounds by
comparing the accurate mass and retention time of an unknown
to those of the library compounds. Many other metabolites
were putatively identified on the basis of accurate mass match
against the Human Metabolome Database (HMDB) and the
Evidence-Based Metabolome Library (EML) by using the
MyCompoundID MS Search program.36 As Figure 5C,D
shows, a much better separation of the cancer and control
groups is obtained with the zero-filled data (without zero-fill:
R2X = 0.389, R2Y = 0.745, Q2 = 0.562; with zero-fill: R2X =
0.366, R2Y = 0.972, Q2 = 0.621).
To determine if there is any enhancement in discriminating

power of individual metabolites for the separation of two
groups, the top 50 metabolites ranked by fold change in the
zero-filled data set were examined. The median and average
fold changes are 1.55 and 1.78, respectively, compared to 1.26
and 1.35 for the same 50 metabolites found in the data set
before applying zero-fill. The average p-value is 0.001 with a
median of 0.01 for the zero-filled data set, compared to 0.14
with a median of 0.09 for the no-zero-filled data set. Thus, both
fold changes and p-values are significantly improved after zero-
fill.
The above results clearly show a significant improvement of

the quality of statistical analysis after applying zero-fill to the
109-sample data set, enabling the detection of more and better
discriminating metabolites to differentiate two cohorts of
samples. To measure the quality of the metabolite-intensity
data in terms of missing values, we plot the percentage of
common peak pairs detectable in cumulative samples as a
function of sample runs in a data set (see Figure 6). This plot is

informative for determining the consistency of metabolite
detection among all the runs. For example, 2858 peak pairs or
about 60% of the total number of peak pairs found in the zero-
filled data set (4761) can be consistently quantified in half of
the samples (109/2), while without zero-fill only 395 or 8.3%
of the total (4761) are commonly detected. In our view, this
type of plot should be presented, along with the metabolite-
intensity table, when reporting the metabolome profiling data

in a metabolomics study. This would assist in judging the
overall coverage of the metabolomic profiles in a study.

■ CONCLUSIONS

We report a detailed study on the issue of missing values in a
chemical isotope labeling LC-MS metabolomics platform. A
zero-fill program has been developed to retrieve missing values
in the initial metabolite-intensity table generated by IsoMS.
Missing values were found to be mainly from the low intensity
metabolites. The zero-fill program allows significant reduction
in missing values. This reduction affords the detection of more
and better discriminating metabolites in a metabolomics study
involving the metabolomic profiling of 109 samples for bladder
cancer biomarker discovery.
Because the extent of missing values can have a profound

effect on metabolomics results, we feel that counting missing
values should be considered as one of the important metrics for
measuring the analytical performance of a metabolomics
platform. To facilitate method comparison, we proposed the
use of two data sets, one from experimental triplicate and
another one from 10 replicate injections of the same sample, to
measure the extent of missing values. Finally, in reporting
metabolomics data, we feel that it is important to include a
summary of missing value analysis (e.g., a plot of number or
percentage of common metabolites detected in cumulative
samples as a function of sample runs). This analysis result,
along with the metabolite-intensity table, measures the level of
commonly quantifiable metabolites in a metabolomics study. At
a chosen % threshold (e.g., metabolites commonly quantifiable
in more than 50% of all the samples), the number of
metabolites retained for statistical analysis should be reported.
In this regard, future work is still needed to examine the issue of
selecting the most appropriate % threshold for data inclusion in
statistical analysis.

■ ASSOCIATED CONTENT

*S Supporting Information
Additional information as noted in text. This material is
available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author
*E-mail: liang.li@ualberta.ca.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was supported by the Natural Sciences and
Engineering Research Council of Canada, Canadian Institutes
of Health Research, the Canada Research Chairs program,
Genome Canada, and Alberta Innovates. We thank Dr. Jun
Peng and Dr. Yi-Ting Chen for generating the LC-MS data set
of the bladder cancer study.

■ REFERENCES
(1) Liew, A. W. C.; Law, N. F.; Yan, H. Briefings Bioinf. 2011, 12,
498−513.
(2) Albrecht, D.; Kniemeyer, O.; Brakhage, A. A.; Guthke, R.
Proteomics 2010, 10, 1202−1211.
(3) Karpievitch, Y. V.; Dabney, A. R.; Smith, R. D. BMC Bioinf. 2012,
13, 9.

Figure 6. Percentage of common peak pairs detected in cumulative
runs as a function of sample runs. The total number of pairs detected
from 109 runs is 4761.

Analytical Chemistry Article

DOI: 10.1021/ac5039994
Anal. Chem. XXXX, XXX, XXX−XXX

G

http://pubs.acs.org
mailto:liang.li@ualberta.ca
http://dx.doi.org/10.1021/ac5039994
http://pubs.acs.org/action/showImage?doi=10.1021/ac5039994&iName=master.img-006.jpg&w=199&h=181
http://pubs.acs.org/action/showLinks?pmid=20077407&crossref=10.1002%2Fpmic.200800576&coi=1%3ACAS%3A528%3ADC%252BC3cXjvFaluro%253D


(4) Bijlsma, S.; Bobeldijk, L.; Verheij, E. R.; Ramaker, R.; Kochhar, S.;
Macdonald, I. A.; van Ommen, B.; Smilde, A. K. Anal. Chem. 2006, 78,
567−574.
(5) Hrydziuszko, O.; Viant, M. R. Metabolomics 2012, 8, S161−S174.
(6) Gromski, P. S.; Xu, Y.; Kotze, H. L.; Correa, E.; Ellis, D. I.;
Armitage, E. G.; Turner, M. L.; Goodacre, R. Metabolites 2014, 4,
433−452.
(7) Little, R.; Rubin, B. Statistical Analysis with Missing Data; Wiley:
Hoboken, NJ, 2002.
(8) Anderle, M.; Roy, S.; Lin, H.; Becker, C.; Joho, K. Bioinformatics
2004, 20, 3575−3582.
(9) Torres-Garcia, W.; Brown, S. D.; Johnson, R. H.; Zhang, W. W.;
Runger, G. C.; Meldrum, D. R. Mol. BioSyst. 2011, 7, 1093−1104.
(10) Valledor, L.; Jorrin, J. J. Proteomics 2011, 74, 1−18.
(11) Schwammle, V.; Leon, I. R.; Jensen, O. N. J. Proteome Res. 2013,
12, 3874−3883.
(12) Jung, K.; Dihazi, H.; Bibi, A.; Dihazi, G. H.; Beissbarth, T.
Bioinformatics 2014, 30, 1424−1430.
(13) Koopmans, F.; Cornelisse, L. N.; Heskes, T.; Dijkstra, T. M. H.
J. Proteome Res. 2014, 13, 3871−3880.
(14) Sangster, T. P.; Wingate, J. E.; Burton, L.; Teichert, F.; Wilson,
I. D. Rapid Commun. Mass Spectrom. 2007, 21, 2965−2970.
(15) Sysi-Aho, M.; Katajamaa, M.; Yetukuri, L.; Oresic, M. BMC
Bioinf. 2007, 8, 93.
(16) Dunn, W. B.; Broadhurst, D.; Brown, M.; Baker, P. N.; Redman,
C. W. G.; Kenny, L. C.; Kell, D. B. J. Chromatogr., B: Anal. Technol.
Biomed. Life Sci. 2008, 871, 288−298.
(17) Begley, P.; Francis-McIntyre, S.; Dunn, W. B.; Broadhurst, D. I.;
Halsall, A.; Tseng, A.; Knowles, J.; Goodacre, R.; Kell, D. B.;
Consortium, H. Anal. Chem. 2009, 81, 7038−7046.
(18) Veselkov, K. A.; Vingara, L. K.; Masson, P.; Robinette, S. L.;
Want, E.; Li, J. V.; Barton, R. H.; Boursier-Neyret, C.; Walther, B.;
Ebbels, T. M.; Pelczer, I.; Holmes, E.; Lindon, J. C.; Nicholson, J. K.
Anal. Chem. 2011, 83, 5864−5872.
(19) Mattarucchi, E.; Guillou, C. Anal. Chem. 2011, 83, 9719−9720.
(20) Veselkov, K. A.; Vingara, L. K.; Masson, P.; Robinette, S. L.;
Want, E.; Li, J. V.; Barton, R. H.; Boursier-Neyret, C.; Walther, B.;
Ebbels, T. M.; Pelczer, I.; Holmes, E.; Lindon, J. C.; Nicholson, J. K.
Anal. Chem. 2011, 83, 9721−9722.
(21) Mattarucchi, E.; Guillou, C. Biomed. Chromatogr. 2012, 26,
512−517.
(22) Mak, T. D.; Laiakis, E. C.; Goudarzi, M.; Fornace, A. J. Anal.
Chem. 2014, 86, 506−513.
(23) Katajamaa, M.; Oresic, M. BMC Bioinf. 2005, 6, 12.
(24) Dunn, W. B.; Broadhurst, D. I.; Atherton, H. J.; Goodacre, R.;
Griffin, J. L. Chem. Soc. Rev. 2010, 40, 387−426.
(25) Scalbert, A.; Brennan, L.; Fiehn, O.; Hankemeier, T.; Kristal, B.
S.; van Ommen, B.; Pujos-Guillot, E.; Verheij, E.; Wishart, D.;
Wopereis, S. Metabolomics 2009, 5, 435−458.
(26) Goodacre, R.; Broadhurst, D.; Smilde, A. K.; Kristal, B. S.; Baker,
J. D.; Beger, R.; et al. Metabolomics 2007, 3, 231−241.
(27) Guo, K.; Li, L. Anal. Chem. 2009, 81, 3919−3932.
(28) Guo, K.; Li, L. Anal. Chem. 2010, 82, 8789−8793.
(29) Leng, J. P.; Wang, H. Y.; Zhang, L.; Zhang, J.; Wang, H.; Guo, Y.
L. Anal. Chim. Acta 2013, 758, 114−121.
(30) Zhang, S. J.; You, J. M.; Ning, S. J.; Song, C. H.; Suo, Y. R. J.
Chromatogr., A 2013, 1280, 84−91.
(31) Tayyari, F.; Gowda, G. A. N.; Gu, H. W.; Raftery, D. Anal.
Chem. 2013, 85, 8715−8721.
(32) Mazzotti, F.; Benabdelkamel, H.; Di Donna, L.;
Athanassopoulos, C. M.; Napoli, A.; Sindona, G. J. Mass Spectrom.
2012, 47, 932−939.
(33) Dai, W. D.; Huang, Q.; Yin, P. Y.; Li, J.; Zhou, J.; Kong, H. W.;
Zhao, C. X.; Lu, X.; Xu, G. W. Anal. Chem. 2012, 84, 10245−10251.
(34) Zhou, R. K.; Guo, K.; Li, L. Anal. Chem. 2013, 85, 11532−
11539.
(35) Zhou, R.; Tseng, C. L.; Huan, T.; Li, L. Anal. Chem. 2014, 86,
4675−4679.

(36) Li, L.; Li, R.; Zhou, J.; Zuniga, A.; Stanislaus, A. E.; Wu, Y.;
Huan, T.; Zheng, J.; Shi, Y.; Wishart, D. S.; Lin, G. Anal. Chem. 2013,
85, 3401−3408.
(37) Phinney, K. W.; Ballihaut, G.; Bedner, M.; Benford, B. S.;
Camara, J. E.; Christopher, S. J.; et al. Anal. Chem. 2013, 85, 11732−
11738.
(38) Peng, J.; Chen, Y. T.; Chen, C. L.; Li, L. Anal. Chem. 2014, 86,
6540−6547.

Analytical Chemistry Article

DOI: 10.1021/ac5039994
Anal. Chem. XXXX, XXX, XXX−XXX

H

http://dx.doi.org/10.1021/ac5039994
http://pubs.acs.org/action/showLinks?system=10.1021%2Fac402689t&pmid=24187941&coi=1%3ACAS%3A528%3ADC%252BC3sXhslWrtrvP
http://pubs.acs.org/action/showLinks?system=10.1021%2Fac301984t&pmid=23110480&coi=1%3ACAS%3A528%3ADC%252BC38XhsFygtLvI
http://pubs.acs.org/action/showLinks?system=10.1021%2Fac201065j&pmid=21526840&coi=1%3ACAS%3A528%3ADC%252BC3MXotlGnt74%253D
http://pubs.acs.org/action/showLinks?system=10.1021%2Fac202516e&pmid=22081902&coi=1%3ACAS%3A528%3ADC%252BC3MXhsVKiurrM
http://pubs.acs.org/action/showLinks?pmid=24489372&crossref=10.1093%2Fbioinformatics%2Fbtu062&coi=1%3ACAS%3A528%3ADC%252BC2cXnslOit7w%253D
http://pubs.acs.org/action/showLinks?pmid=21212895&crossref=10.1039%2Fc0mb00260g&coi=1%3ACAS%3A528%3ADC%252BC3MXjtFGhtLw%253D
http://pubs.acs.org/action/showLinks?pmid=20717559
http://pubs.acs.org/action/showLinks?pmid=23374368&crossref=10.1016%2Fj.chroma.2013.01.045&coi=1%3ACAS%3A528%3ADC%252BC3sXhvFWjs7k%253D
http://pubs.acs.org/action/showLinks?crossref=10.1007%2Fs11306-007-0081-3&coi=1%3ACAS%3A528%3ADC%252BD2sXhtFOntbvF
http://pubs.acs.org/action/showLinks?crossref=10.1016%2Fj.jchromb.2008.03.021
http://pubs.acs.org/action/showLinks?system=10.1021%2Fac403000n&pmid=24200037&coi=1%3ACAS%3A528%3ADC%252BC3sXhslers73P
http://pubs.acs.org/action/showLinks?pmid=17362505&crossref=10.1186%2F1471-2105-8-93
http://pubs.acs.org/action/showLinks?system=10.1021%2Fac900166a&pmid=19309105&coi=1%3ACAS%3A528%3ADC%252BD1MXjsFKktrg%253D
http://pubs.acs.org/action/showLinks?pmid=15661078&crossref=10.1186%2F1471-2105-6-179
http://pubs.acs.org/action/showLinks?pmid=17680628&crossref=10.1002%2Frcm.3164&coi=1%3ACAS%3A528%3ADC%252BD2sXhtVyksL7O
http://pubs.acs.org/action/showLinks?crossref=10.1007%2Fs11306-011-0366-4&coi=1%3ACAS%3A528%3ADC%252BC38Xmt1ajt70%253D
http://pubs.acs.org/action/showLinks?system=10.1021%2Fpr500171u&pmid=25102230&coi=1%3ACAS%3A528%3ADC%252BC2cXht12nsr7I
http://pubs.acs.org/action/showLinks?pmid=20656082&crossref=10.1016%2Fj.jprot.2010.07.007&coi=1%3ACAS%3A528%3ADC%252BC3cXhsFahurbI
http://pubs.acs.org/action/showLinks?system=10.1021%2Fac400099b&pmid=23373753&coi=1%3ACAS%3A528%3ADC%252BC3sXhvVCjurc%253D
http://pubs.acs.org/action/showLinks?pmid=23245903&crossref=10.1016%2Fj.aca.2012.11.008&coi=1%3ACAS%3A528%3ADC%252BC38XhslymsbfI
http://pubs.acs.org/action/showLinks?pmid=20046865&crossref=10.1007%2Fs11306-009-0168-0&coi=1%3ACAS%3A528%3ADC%252BD1MXhsFGrurfL
http://pubs.acs.org/action/showLinks?system=10.1021%2Fac102146g&pmid=20945833&coi=1%3ACAS%3A528%3ADC%252BC3cXht12jtbfJ
http://pubs.acs.org/action/showLinks?system=10.1021%2Fac9011599&pmid=19606840
http://pubs.acs.org/action/showLinks?system=10.1021%2Fac202416r&pmid=22070433&coi=1%3ACAS%3A528%3ADC%252BC3MXhsVeqtbfO

