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Abstract

To reveal metabolomic changes caused by a bidbgevent in quantitative
metabolomics, it is critical to use an analyticabltthat can perform accurate and precise
guantification to examine the true concentratioffiedences of individual metabolites found in
different samples. A number of steps are involvednietabolomic analysis including pre-
analytical work (e.g., sample collection and stejagnalytical work (e.g., sample analysis) and
data analysis (e.g., feature extraction and queatibn). Each one of them can influence the
guantitative results significantly and thus shooédperformed with great care. Among them, the
total sample amount or concentration of metaboldas be significantly different from one
sample to another. Thus, it is critical to reduceskiminate the effect of total sample amount
variation on quantification of individual metabebt In this review, we describe the importance
of sample normalization in the analytical workflawth a focus on mass spectrometry (MS)-
based platforms, discuss a number of methods fdgaeported in the literature and comment on
their applicability in real world metabolomics ajgaltions. Sample normalization has been
sometimes ignored in metabolomics, partially duethe lack of a convenient means of
performing sample normalization. We show that sgverethods are now available and sample
normalization should be performed in quantitativetabolomics where the analyzed samples

have significant variations in total sample amounts

Keywords. metabolomics; quantitative metabolomic profilimgetabolite quantification; sample

normalization; liquid chromatography; mass specetn
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1. Introduction

Quantitative metabolomics involves the applicatioh analytical, statistical and
bioinformatic techniques to profile the metabolon@scomparative samples, examine the
metabolomic changes associated with phenotypesosfsiems from which the biological or
clinical samples are taken, and investigate thesraf significant metabolic changes in the
biosystems including functional studies and/or ovsry of chemical biomarkers of phenotypes.
NMR and mass spectrometry are two primary toolsni@tabolomic analysis [1,2]. However,
compared to NMR, MS is increasingly being used rf@tabolomics due to higher detection
sensitivity and larger metabolome coverage [3,4%, M combination with isotope standards or
isotope labeling of samples, can also produce gatmé information on metabolites [5-7].
While absolute quantification is important for taetgd analysis of individual metabolites of
interest in applications such as validation of deptial metabolite biomarker, only relative
guantification of metabolites is available in higbverage discovery metabolomics with a focus
on discovering one or set of metabolite biomarkeffsa phenotype such as a disease and
functional metabolomics with a focus on investiggtthe functional roles of metabolites in a
biological system. Relative quantification measutks relative quantity differences of an
individual metabolite as expressed by the metadislpeak intensity variations in comparative
samples. It does not require the use of standardshais can be used for untargeted analysis
without knowing the identities of the metabolitasoriori [8-10]. In general, a much larger
number of metabolites can be profiled by relativeargification, particularly in liquid

chromatography (LC) MS-based techniques [10].

Page 4 of 57



Figure 1 shows the general workflow for quanttatmetabolome profiling. There are
three major steps: pre-analytical work, analytigatk and data analysis. In pre-analytical work,
processes such as sample collection, sample poegsimg and sample storage need to be
carefully carried out in order to maintain the s#ariptegrity prior to chemical analysis [11]. For
example, proper storage of samples such as imneefdészing and storing at -8D for biofluids
is important to minimize concentration changes etabolites due to enzyme activities or other
physicochemical processes after sample collecti@ilB]. In the analytical workflow, there are
several steps involved, including, in no particuwdader, sample processing such as removal of
interfering components (e.g., proteins), chemicativétization if needed, spiking reference
standards or reference control-sample, bufferingadjusting solvents or pH of the sample
solution, and analyzing the processed samples ilig or MS. After data acquisition from all
the samples, data processing and analysis are gatpto extract information on identity and
absolute or relative quantity of individual metates.

Each step or process listed in Figure 1 need® toabefully carried out or controlled in
order to produce accurate and precise quantitalata that reflect the true concentration
differences of individual metabolites in the samspl€his review focuses on the discussion of
sample normalization. Sample normalization refera pprocess to adjust the sample volume or
concentration prior to data acquisition or adjust tcquired signals after data acquisition to
equalize the total signals of metabolites in indiixdl comparative samples (see Figure 2). For the
latter, the total signals detected are assumee telated to the sample amount injected and thus
normalizing the signal intensity is thought to lygiigalent to normalizing the sample amount. In
this review, the importance of performing samplenmalization in quantitative metabolomics is

first discussed. Several considerations in the ldpweent and usage of a proper sample
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normalization strategy for metabolomic profilingeadescribed. A survey of methods reported
for sample normalization including their relativeemts for metabolomics is presented. Finally,
because there are no unified views on how best aame perform sample normalization in
guantitative metabolomics, we comment on implenmgntsample normalization in current
practices, which may help future development ofacaamnified sample normalization method as

part of standard operational procedure (SOP) faab@omic profiling.

2. Importance of Sample Normalization

Because the major goal of quantitative metabolgmafiling is to determine the
concentration differences of individual metabolite$wo or more comparative samples, the size,
weight or volume of individual samples can sigrahdy affect the relative quantification results.
For example, in a biofluid such as urine, the totaicentration of metabolites in a sample herein
denoted as sample concentration can differ by riire 14-fold [14]. The term, concentrated or
diluted urine (or any other type of sample), refeyrsa urine sample with high or low "total
concentration” of metabolites, respectively. Even the same individual, the urine sample
concentration can vary greatly, depending on wiaiake, diet and excretion via, for example,
sweating. Because urine concentration can be imfle by external factors, in clinical field, this
varying factor is often controlled by using a refeze analyte inherently present in all urine
samples. Creatinine is the most commonly usedeebéer and the assumption is that creatinine
concentration reflects the urine concentration [25{liluted urine would have a lower creatinine
concentration and vice versa. The measured absotuteentration of an individual metabolite
(e.q., glucose) is divided by the creatinine cotragion which can be readily measured in urine

using a commercial assay kit. The concentratiorthef metabolite is reported as x mM (or
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pM)/creatinine [16]. In other words, the metabotitencentration is normalized to the creatinine
concentration and the normalized concentrationhentcompared to a reference range to
determine whether the metabolite concentrationitkimvthe normal range or not. Thus, sample
concentration or amount normalization is a wellbgguzed and commonly practiced process in
urinary metabolite measurement in clinical fields many metabolomics studies are in the area
of discovering potential biomarker(s) of a diseasanakes sense to conform the practice of
metabolome measurement to the clinical norm toywwectlinically acceptable and useful results.
For urinary metabolomics, creatinine measuremeatidc be used for sample
normalization, although other methods have beemrldped for the same purpose (see below).
However, for many other biofluids or biological sales, there is no known compound that is
widely accepted as a reference for sample nornteizaThe sample concentration of feces,
sweat, bronchial lavage fluid, etc., can vary dyedthe cell extracts or tissue extracts can also
have different total amounts of metabolites, depenon several factors including the number
of cells sampled, cell lysis efficiencies, compasitof cells, and cell density in tissue for tissue
samples. If only a fixed volume (e.g., 5 puL of styeaeight (e.g., 1 mg of dried feces), or size
(e.g., a tissue of 2 mm long x 2 mm wide x 10 pokbhis taken from each individual sample
for metabolomic comparison, it is impossible to imkehte the contributing factors in the
measured concentration differences of individuataielites. The measured differences can be
due to the sample concentration differences, tis¢edeunderlying differences caused by a true
differentiating factor such as a biological eveag(, a mutation in cells or a disease in clinical
samples), or a combination of the two. Because vanmtwio determine the metabolite

concentration changes caused only by a biologwahte not by a non-biological factor, sample
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normalization prior to analyzing all the individusdmples should be considered as a critical and

necessary step in the overall metabolomic profiiykflow.

3. Performance Consider ationsin Sample Nor malization

Compared to genomics and proteomics, sample narati@n in metabolomics is much
more challenging because of the greater diverditjmwetabolite structures. To date, there is no
standard method for measuring the total amountedibolites directly in a way similar to that of
total protein amount measurement commonly usedatepmics (e.g., bicinchoninic acid assay).
Alternatively, other indirect or partial physical chemical property measurement methods have
been reported to relate the measured values ortijesrto the total metabolite amount for
sample normalization (see next section). In devefpmr applying a sample normalization
method for metabolomics, the overall performancthefmethod is often assessed by the ability
of the method to minimize variations within the sagroup of samples. The easiest and most
common way of evaluating the variations is thropgimcipal component analysis (PCA) score
plot. An optimal sample normalization method shodldplay the shortest distance between
samples within the same biological group and theatgst separation between samples from
different groups. Comparing the intra-group’s nekatstandard deviations (RSD) or the number
of discriminant features found can also be usedvimuate the method performance. Smaller
RSD or less discriminant features within a grougasirable. For targeted metabolome profiling,
a series of standard compounds can be spiked fatafit concentrations into the comparative
samples while maintaining the same total spikensnoant. The ability of a sample normalization
method to detect the differences in spike-in datathen be evaluated. This approach has been

used in a NMR-based metabolomics study [17].

Page 8 of 57



Besides intra-sample variability comparison, thenmadization accuracy should also be
assessed. This can be done by normalizing a sefrisamples with known dilution, and then
evaluating whether signals of a particular compoundiluted samples have been brought back
to the original value and how accurate the adjustdde is. In developing a new normalization
method, it is also important to establish a cotr@fa between the new method and the
conventional normalization approaches, as a pamethod validation. It is assumed that under
normal circumstances (e.g., healthy individualsguits obtained from different normalization
methods should show positive correlations with eaitier. For example, in the methods to be
discussed later, correlation between MS *“total wisefignal” (MSTUS) and osmolality
normalization factors was determined to e=R0.71 [14], correlations between UV absorption
of dansyl labeled metabolites and creatinine oraality were R = 0.95 and 0.90, respectively
[18], and correlation coefficients for matrix-indt ion suppression (MIIS) method with
creatinine and osmolality were 0.93 and 0.99, retspady [19].

In addition to method validity, there are severthleo considerations that also need to be
taken into account before selecting an appropriagemalization method for a particular
application, as discussed below.

It is important to decide whether the normalizatgtap is performed pre-acquisition or
post-acquisition (see Figure 2) [20]. In pre-aciigis methods, the volumes of biological
samples are adjusted according to the measureditipgmrfe.g., creatinine concentrations) to
equalize the total sample concentration for all gas By taking the same volume of aliquot
from each sample, the same amount is used for giadly NMR or MS. Alternatively, instead
of adjusting the sample volume, different volumdssamples according to the measured

guantities are taken to ensure the same amountfosedetabolome analysis. In contrast, in
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post-acquisition methods, the sample amounts arexmerimentally normalized and thus the
total injection amounts used for metabolomic pmofjlare different, resulting in different overall
NMR or MS signals. The individual metabolite sighare then adjusted or normalized for
different samples based on a certain criterion sashthe total ion signal intensity of a
chromatogram from a sample.

Because the same amount is used for sample analysisajor advantage of pre-
acquisition normalization is that similar instruntedrresponses can be obtained for all samples.
This is important for MS-based methods. In elegrag ionization (ESI) MS, responses of
individual metabolites are often non-uniform atfeliént concentrations because of different
ionization efficiencies and different degrees af suppression. As a result, the analyte signals
may not necessarily be linearly scaled with theatelite concentration in a complex biological
matrix. Thus, by adjusting all the comparative sE®pgo the same total concentration, more
accurate quantitative results will be produced. tAeo advantage of pre-acquisition method is
that the measured quantities from the samples earséd to control the sample injection amount
in NMR or MS analysis. In this way, an optimal sd&npmount can be used for metabolomic
profiling. For example, in LC-MS, it is importard keep the injection amount optimal in order
to increase the probability of detecting low cortcation metabolites [21,22], while avoiding the
over-injection problem that can cause signal séturand sample carryover.

Comparisons between pre-acquisition and post-atigmisnethods have been reported.
For example, Chen et al. showed that for five #grdiluted rat urine samples, post-acquisition
normalization methods failed to overcome urine afaifity because of the nonlinear response to
sample dilution caused by ion suppression or s@dranetabolites. On the other hand, pre-

acquisition correction was effective for reducingrigtions introduced by different urine
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concentrations. They also demonstrated that praisitgn injection volume calibration is
superior in reducing intra-group bias in the preseof biological variations [23]. Similarly, the
study performed by Edmands et al. suggested tleadguuisition normalization is a better choice
for biological information recovery as it identidiethe largest number of discriminant MS
features when compared to three post-acquisitiomalization methods [20]. However, the
downside of pre-acquisition normalization is thataaditional experimental step is required in
the overall workflow. In addition, an extra amowftsample may be required for measuring the
guantities, as this sample aliguot may not be Udsednetabolome analysis. Post-acquisition
methods avoid these pitfalls and are relativelyenmnvenient and quicker to perform, as long
as a software program to properly extract the gtaive information from the acquired data is
available. Nevertheless, it should be kept in nthmat the performance of post-acquisition may
be compromised by variations in detection respqrasedescribed above.

Another factor to be considered is the ease ofatiwer, particularly for pre-acquisition
normalization, since an extra step is requiredn&tabolomics, using a large number of samples
is preferred in order to create valid statisticald@ls and to obtain more accurate biological
information [24]. However, the number of samplebécanalyzed is often not only limited by the
availability of biological samples, but also theeaall analytical time and efforts required. The
latter is affected by the complexity of sample @mgpion protocols as well as the length of
analysis time per sample. In this regard, it iSrdéte to keep the normalization method simple,
quick and convenient to perform so that it would restrain the use of a large sample set for
metabolomics.

The selection of a proper normalization method aspends on the type of biological

sample to be analyzed. Some methods are only apfido specific biological media while
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others are more generic. For example, normalizatioreatinine is based on the relatively
constant excretion rate of creatinine through glatae filtration, and is therefore only
applicable to urine specimens. On the other handnalization to MS *“total useful signal”
(MSTUS) uses the total intensity of peaks that @eesent in all samples under study as the
normalization factor, and it is thus more univdssapplicable. While a specific method
targeting one type of samples may be more effic@ntoccasions for its targeted biological
medium, a generic normalization method should beendesirable because of its adaptability to
various sample types and the ease of method trafisim one type of biological matrix to
another.

From the above general discussion, it is clear, thhen we judge the utility of a sample
normalization method, several factors including leapility of the method for the biological
samples on hand, normalization accuracy, conveajerspeed and cost of performing
normalization need to be considered. In the foltayvsection, we will review the reported
normalization methods for MS-based metabolomicslistu and discuss their performance

according to these factors.

4. Methods for Sample Nor malization

Over the past several years, a number of samplmalzation methods have been
reported for metabolomics applications. Table vjgles a summary of the reported methods for
sample normalization, while Table 2 summarizes dddgantages and disadvantages of each
method, with a focus on the instrument availahilityme and convenience to perform

measurement, as well as the method validity.
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Table 1. Summary of sample normalization methodsl us MS-based metabolomics.

Cattleurine Specific gravity Pre Similar Jacob et al. [25]
Freeze-drying Pre performance for
MSTUS' Post all three methods
Rat urine Urine volume Post Osmolality and  Warrack et al. [14]
Osmolality Post MSTUS
Creatinine Post
MSTUS Post
Rat urine Total intensity Post Median fold Veselkov et al.
Median fold change Post change [26]
Quantile Post
LOESS Post
Rat urine MSTS Post Urine volume Godzien et al.
MSTUS Post [27]
MSGUS' Post
Urine volume Post
Rat urine All MS signals Post Creatinine value Chen et al. [23]
MSTUS Post + all MS signals
Creatinine value Post and Creatinine
Creatinine peak area Post value + MSTUS
Creatinine value Pre
Creatinine value + Pre + Post
all MS signals
Creatinine value + Pre + Post
MSTUS
Human urine Specific gravity Pre Pre-acquisition ~ Edmands et al.
Specific gravity Post normalization to [20]
Median fold change Post specific gravity
Urine volume Post
Human urine MSTUS Pre - Mattarucchi and
Guillou [21]
Human urine Conductivity Post LOESS Gonzalez-
LOESS Post Dominguez et
al.[28]
Human urine MIIS> Pre - Chen et al. [19]
Human urine UV absorbance Pre - Wu and Li [18
Adherent cdll Total protein Post Total DNA Silva et al. [29]
line Cell count Post
(OVCAR-8) Total DNA Post
Adherent cdl Protein content Post Similar Cao et al. [30]
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line(MDCK)  Metabolic markers Post performance for
both methods
Adherent cell Cell count Post Similar Hutschenreuther et
line(MCF-7)  Sum of peak areas Post performance for al. [31]
both methods
Human cell MIIS Pre - Chen et al. [32]
lines
Cyanobacteri Chlorophylla Post Similar Huege et al. [33]
al strains Total protein Post performance for
Glycogen Post all six methods
sIC? Post
sIC.90 Post
sIC.AA® Post
E. coli UV absorbance Pre - Wu and Li [34
Sweat Na concentration Pre - Appenzeller et al.
[35]
Sweat UV absorbance Pre - Hooton and L
[36]
EBC® Urea Post - Esther et al. [37]
EBC MSTUS Post MSTUS Peralbo-Molina et
IS response al. [38]
IS response +
collected EBC
volume
IS response +
expired EBC volume
EBC Sum of all areas Post - Fernandez-
Peralbo et al. [39]
Dog fecal Dry weight Post - Guard et al. [40]
samples
Human fecal UV absorbance Pre - Xu et al. [41]
samples
Saliva UV absorbance Pre - Zheng et al. [42]

1. MSTUS: MS total useful signal; 2. LOESS: Locallieighted scatter plot smoothing; 3.

MSTS: MS total signal; 4. MSGUS: MS group usefujnsil; 5. MIIS: Matrix-induced ion

suppression; 6. sIC: selected ion count for allaielites; 7. sIC.90: selected ion count for 90%
of the non-extreme metabolite pools; 8. sIC.AA:est#d ion count for the total amino acid

content. 9. EBC: exhaled breath concentrate. 10nt&nal standard.
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4.1. Normalization of Urine Samples

Urine is one of the most commonly investigated lbids in metabolomics, because it
can be easily and non-invasively collected in laggantities, and the sample is relatively clean,
requiring a simple pre-treatment procedure [15]fddmnately, urinary solute concentrations
often vary widely depending on hydration statusietisince previous urination, dietary intake or
other physiological factors [43,44]. Thus, it istsarprising that the majority of research efforts
on normalization method development actually tagpecifically at urine samples. The most
widely accepted approach for urine volume correctsoto express metabolite levels relative to
creatinine concentration [45-47], because the odtereatinine excretion through glomerular
filtration is relatively constant under normal cdmwhs within or across individuals [48].
However, the assumption of constant creatinineetiar is often invalid, as creatinine excretion
was found to vary across individuals due to agedge race and muscle mass differences or
disease states [49-52]. Even within the same iddali, the urine creatinine level may change
depending on diet, time of day, level of exerciaegd physiological conditions [53-55]; the
number of subjects used for these studies rangad # individuals over 13 days [53], 7
individuals over 90 days [54], to 11 individualseoseveral months [55]. As a result, the validity
of using creatinine concentration as the normabnafactor is often challenged [56]; in the work
of Alessio et al [56], 376 individuals were studiétlanother example, Burton et al. showed that
normalization of urinary pteridines to creatinind dot improve differentiation between benign
and malignant breast cancer samples, and the susluiggested that alternative renal dilution
factors are needed (urine samples of 25 individwal®e used in the study) [57]. In addition, it is

also questionable whether it is sufficient to ndimgathe wide range of metabolites based on a
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single compound [58]. Future work is still neededdetermine whether the use of a large
number of subjects per cohort in a metabolomicsttalld overcome some creatinine-level-
abnormalities associated with a fraction of the @asto produce reliable metabolomic profiling
results. Nevertheless, because of the conveniendelav cost in creatinine measurement,
creatinine normalization prior to LC-MS acquisitiean still be useful in controlling injection
volumes to ensure that urine samples are injectedomparable levels, and that similar
instrumental response is warranted for all sampliegreatinine normalization alone is not
sufficient due to variations in creatinine excratrate, post-acquisition remedy can be applied to
further improve the results. As an example, inGné study of rat urine (n = 5 in the absence of
biological variation and n = 32 in the presencdiofogical variation), it was demonstrated that
injection volume calibration based on creatininédugaprior to LC-MS analysis is effective in
adjusting urinary solute concentrations to simikewels. This pre-acquisition normalization
method significantly reduces intra-group variati@ssindicated by better clustering in principle
component analysis (PCA) score plots and reducekl @e=a relative standard derivations (RSDs)
in intra-group comparisons [23].

Urine osmolality is a direct measure of the totahary solute concentration that is only
affected by the number of particles in urine. Thanes it is often considered as a gold standard
for estimating urinary concentration [59], and baen used as a valid scaling factor for urinary
solutes [60,61]. Application of osmolality normation in urinary metabolomics analysis has
been reported, which showed better separation leetwid@ferent biological groups as well as
reduced variations within biological replicates wheompared to no normalization or
normalization to urine volume and creatinine [1#lowever, the procedure of measuring

osmolality is often not practically available, atitus specific gravity is usually measured,
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instead, as an estimation of osmolality [59]. Ursgecific gravity is the ratio between the
density of urine and that of pure water at a conisiamperature, which can be measured either
directly by gravimetry or indirectly by refractormgt Specific gravity has been used as a
normalization method for urinary metabolites in mapplications [43,62,63]. Recently, the
feasibility of using specific gravity as a normaliion strategy in urine metabolomics has been
assessed by Jacob et al. [25] in comparison weszl-drying, a valid normalization strategy for
anabolic practices in cattle [64,65]. The authoasehshowed that normalization by specific
gravity improved separation between two study gscamd revealed the same differentiating ions
as the freeze-drying method, and they thus propdtisaid specific gravity can be used as an
alternative to the time-consuming freeze-drying ioine metabolome normalization. Besides
creatinine, osmolality and specific gravity, oth®nventional urine normalization methods
include normalization to 24-hour urine volume, B8], conductivity [28] and flow rate
correction [67]; but these methods are used léss @nd will not be further elaborated here.
Post-acquisition or data-driven normalization apples have been used for some
metabolomics studies in recent years. Warrack.ehale proposed the idea of using the total
intensity of peaks that are common to all samp{eewn as MS “total useful signal” (MSTUS),
as the scaling factor [14]. This concept is simitathe use of total integrated proton signal for
normalization in proton NMR-based metabolomics sial [68]. Incorporation of only “useful
signals” ensures that contributions from xenobgt@nd artefacts are minimized. The authors
have compared MSTUS normalization to other commmmalization approaches in the non-
targeted metabolomic profiling of rat urine fronffelient dose groups. They recommended both

MSTUS and osmolality for detection of significanetabolic changes as these methods are most
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efficient in differentiation between high and lows# groups (see Figure 3). Since reported in
2009, MSTUS normalization has been employed inrséapplications [21,27,69].

In addition to MSTUS, more sophisticated stati$tsteategies have been introduced. For
example, Veselkov et al. have compared four nomatbn techniques [26]. The first two
methods, based on total intensity and median folthge, respectively, assume that metabolite
peak intensities vary linearly with concentratiavhile the other two approaches, quantile and
locally weighted scatter plot smoothing (LOESS)nsider peak-intensity-dependent scaling
factors (i.e., in the presence of ion suppressiosaturation). They found that for the majority of
urinary metabolites, the peak intensities did mspond differentially to dilution, which supports
validity of the first two methods (i.e., measurit@jal intensity and median fold change). In
terms of normalization performance, all four methgukrform equally well in the absence of
biological variation. However, when biological \ation is considered, the performance of total
intensity normalization is slightly inferior due t@riations in total metabolite output between
samples. Despite the comparative effectivenesshef dther three methods, the authors
recommended the median fold change approach beoéiutseaelaxed assumption with regard to
the proportion of asymmetrical metabolite chang&he effect of median fold change
normalization in the presence of biological vaaatis illustrated in Figure 4.

More comprehensive evaluations of statistical inegits have been discussed by Ejigu et
al. [70]. In general, the advantage of data-drivapproaches over conventional urine
normalization methods is that the methodology i nestricted to urine samples and can be
readily adapted to other types of biological masicHowever, since the scaling factor is based
on MS data, the normalization process has to benpeed after LC-MS analysis. As discussed

before, post-acquisition normalization cannot cainthe amount of sample injected into the
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mass spectrometer, and therefore cannot be usalietiate problems associated with varying
injection amount such as signal saturation, ionpeegsion and missing values from low
abundance or not easily ionizable metabolites. Algh pre-acquisition MSTUS has been
proposed by Mattarucchi et al. to improve the dquailf extracted LC-MS data [21], it requires
LC-MS acquisitions to be performed for all sampbe®r to metabolomics analysis in order to
obtain MSTUS values. This would increase the wa#tl@onsiderably and is not practical for
analyzing a large number of samples.

Recently, Chen et al. have proposed a novel idesiafjy MS signals for pre-acquisition
urine normalization [19]. The method is based orasneng the extent of ion suppression
induced by urine matrix on a spiked indicator coommb (hexakis), using flow injection analysis
electrospray ionization mass spectrometry (FIA-ES}. The authors have shown that the level
of ion suppression is proportional to urine concarin, and therefore a regression equation can
be established to estimate the relative conceatraif unknown urine samples. Application of
this method has been demonstrated on the urinebpietaics study on breast cancer. Overall,
this matrix-induced ion suppression (MIIS) methadvides high sample throughput and can
also be fully automated. The applicability of tlagproach has also been demonstrated on cell
cultures (see below), but remains to be investdy&de other biological matrices. One advantage
of this method over other methods such as osmplatispecific gravity measurement is that no
additional instrument is required as the same Mgl disr metabolomic profiling is employed for
ion suppression measurement (see Table 2). Onttier band, this is also a disadvantage,
because an expensive MS instrument is used for urirgsthe ion signals for sample

normalization.
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Another concept for sample normalization is to datee the UV absorbance of the
sample solution as a measure of the total condenmtraf solutes that absorb at the specific
wavelength. This type of normalization approactmisre representative of the overall sample
composition compared to the use of a single comgp@uich as creatinine, and is independent of
the biological medium. In addition, UV measuremesmh be performed prior to LC-MS analysis
to allow injection amount adjustment. Kempermaralkthas reported normalization of urine
samples to the area under the curve at 214 nm ¢AdJ&nd showed that this method is preferred
to creatinine normalization for minimizing peak arand intensity variations of peptides [58].
However, for metabolites with varying structurds 214 nm measurement may not reflect the
total concentration of all metabolites in a sample.

We have developed a method of determining the to&thbolite concentration based on
the use of chemical labeling to attach a UV absgrldansyl moiety to amines and phenols,
followed by a rapid step-gradient LC-UV detectidntloe labeled metabolites at 338 nm [18].
The concept is shown in Figure 5. Although a démation step is required in this method, the
derivatization reaction is simple to perform ankiesaabout one hour. It can also be performed
simultaneously for labeling multiple samples. Datization is widely used for other
normalization methods such as BCA assay and Brddéssay in protein quantification and
creatinine measurement in urine. Because labefiigemcies of amines and phenols in different
samples of the same matrix such as urine are sjnat@urate relative quantification of amines
and phenols from the UV measurement of the labgleducts can be achieved [71]. In addition,
the labeled metabolites can be directly analyzed @MS, if dansylation isotope labeling LC-

MS is used for profiling the amine/phenol submelaim@. One disadvantage of this method is
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that it requires an LC-UV equipment. However, imeaent work, microwell plate reader was
used for measuring UV absorbance (see below) [72].

We have shown that this normalization strategyotiffely corrects for the dilution effect
in intra-day urine samples and minimizes artifics@jparation caused by the variations in the
original urine concentrations. Although parallelhgmarison with other normalization methods
was not performed, we did observe a good correldieween the UV absorbance and creatinine
or osmolality values. It should be noted that #amsylation LC-UV normalization method is
based on the assumption that the total concentrafidabeled metabolites composed of mainly
amines and phenols is linearly related to the tatakcentration of all the metabolites in a sample.
Whether this assumption is generally true forted $amples remains to be determined. Although,
at this stage, we do not know with certainty arsedse that would cause a biased change in the
total concentration of amines and phenols, it magpen under special circumstances such as
proteinuria and unusual diet, and such a biasedgehavould affect the accuracy of the
normalization method. However, if there are onliga exceptions (e.g., due to the presence of
one dominant compound [58]) out of a large cohdrsamples where the determined sample
amount is slightly different from the rest of thangples, a post-acquisition method can be
applied to improve the overall data quality. Foample, Chen et al. have illustrated that the
combination of pre-acquisition injection amountilzation based on creatinine values and post-
acquisition MSTUS normalization provides the bessuits in overcoming urine sample

variability [23].

4.2. Normalization of Cell Extracts
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Cellular metabolomics plays an important role irstegns biology and has found
applications in many areas such as toxicology amtlipical drug testing in whickex vivo
models are required [73,74]. In cellular metabolmsniit is often of interest to investigate
guantitative metabolic changes in response to réiffieenvironmental stimuli. Unfortunately, it
is difficult to control the amount of cells harvedtfrom different culture mediums or plates due
to variations in seeding density and/or treatmemiddions [30]. For example, exposure to toxic
compounds such as 2,3,7,8-tetrabenzodi-p-dioxin DO may lead to decreased cell
proliferation rate and subsequently lowered ovaradtabolite level [75]. The same problem is
also encountered in microbial metabolomics wherenparative metabolomic analysis of
bacterial species under different environmentaldd@mns is studied or a metabolome profile is
used for microorganism differentiation and idewctfion. Therefore, sample normalization of
mammalian and microbial cell extracts is important.

For mammalian cells, cell counting using a hemangter is commonly used for cell
amount normalization. In the case of adherent cdiésachment of the cells from the culture
flask is required, typically by using trypsinizatior direct scraping. Trypsinization is considered
less suitable for metabolomics because it can tieathanges in the cellular metabolome profile
[76] or introduce metabolomic artifacts [77]. Ditescraping is more labor-intensive and can
often result in loss of cells. In addition, the a@xy of cell counting normalization method is
often impaired by inhomogeneity of the cell suspemsand random variations introduced
during aliquoting and transfer process [31]. Mompgince this method is performed at the time
of harvest, it would delay subsequent quenchinggaare and may result in alterations in the
metabolic profile. For bacterial cells, direct ctng of the cell number is difficult to implement

because of their small sizes. Alternatively, agdtdensity at 600 nm (Qfg) is often determined
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as a measure of the light scattered by a cultme tlke ORyovalue is then correlated to a known
colony number to estimate the amount of cells. A®@ample, Marcinowska et al. have shown
that normalization to O§ values provides a robust basis for quantitativalymms and
differentiation of clinically relevant bacterial lte [78]. While this method is applicable to
homogeneous cell suspensions, it may not be assogmt for adherent cell cultures. Besides,
similar to direct cell counting, additional timerequired to perform the measurement before cell
sample preparation.

Other conventional approaches for cell amount detetion include measurement of the
dry weight of cell debris and quantification of ttmal protein content [79]. The dry weight
method is time-consuming and is not preferred fetaiolomics studies in which a large number
of samples need to be processed. Also, relatialyel errors may be introduced in dry weight
measurement when the sample amount is small [38¢& protein amount can be readily
determined using well-established colorimetric medthsuch as BCA assay and Bradford assay,
and has been used in several applications for stgdgellular metabolic changes [80,81].
However, Silva et al. have shown that the proteomcentrations of both the metabolite
extraction solution and the remaining cell pelleield to produce expected correlations with
seeded cell number, due to poor protein recoveryn@tabolomics-compatible solvents and
incomplete protein re-solubilization from the pe[l29]. Therefore, assaying the protein amount
would require a separate experiment to be performearder to obtain accurate quantitation
results, which is not desirable as it consumes parthe samples and prolongs the sample
preparation process. Instead, the authors haveopedpthe use of DNA concentration as the
normalization factor for metabolomic data, as thaye demonstrated good correlation between

DNA concentration of the cell pellet and seeded ru@iber for four adherent cell lines. Despite
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the reported efficiency and robustness of this wabtlexamples of how normalization to DNA
concentration could improve statistical analysisngtabolomics were not given in this work.

In recent years, several data-based normalizatrategies have also been introduced for
cellular metabolomics. One approach involves the afsspecific metabolic markers as the cell
amount indicator [30,33,75], with the assumptiomttithe concentrations of these selected
metabolites are directly proportional to the calimber and are independent of the treatment
conditions under study. For example, Cao et al.itiastified pantothenate and inositol as the
best candidate markers for normalization of Madiasdy canine kidney (MDCK) cells based on
three criteria: good linearity between the metdbadiignal intensity and the cell amount for
serially diluted cell suspensions, high linear etation between the metabolite abundance and
the protein content for cells seeded at differemtcentrations, and improved separation between
two cell lines and closer clustering within eacli tee. In general, the use of single or a few
metabolic markers is simple, fast and conveniemweier, it should be noted that the same
metabolite markers are not necessarily applicablather cellular systems, as their cell line and
treatment independence may not always hold truerefbre, the validity of these metabolic
markers for other studies requires further assessmdich poses a limitation to the utility of
this normalization method.

Alternatively, the use of total metabolite inteyss often considered as a more robust
way of estimating the cell number. Huege et al.ehevaluated the normalization effects of three
total intensity parameters, namely the intensity ©f all metabolites, the intensity sum of 90%
non-extreme metabolites and the intensity sum ofnanacids and their conjugates, in
cyanobacterial metabolomics [33]. It was conclutleat these three normalization factors are

essentially equivalent in terms of their influerm® sample cohesion within strain groups and

Page 24 of 57



25

separation among different strains. Hutschenrewghal. have also evaluated the performance of
peak area sum normalization in comparison to calint [31]. They observed a good linear
correlation between sum of peak areas and celltaeithin a specified linear range. However,
they noted that this normalization method shouldy dme applied when the cell extract
concentration in two comparative samples differddsg than two-fold, as otherwise the number
of “false significants” would increase to over 10%his is likely attributed to the fact that not all
metabolites exhibit linear response with concermnafe.g., presence of borderline metabolites
and ion suppression effect). Therefore, the autBoggested that similar extract concentrations
should be used for comparison in cellular metabadenirhis conclusion is in accordance with
our earlier discussion on the importance of prasatijon normalization.

As we discussed in Section 4.1, normalization todhgorbance of the sample solution is
independent of the biological matrix and is perfedprior to MS acquisition, which makes it a
promising approach for cell amount adjustment.dditon, when incorporated into the LC-MS
metabolome profiling workflow, this normalizatioriep is usually carried out immediately
before LC-MS (i.e., after all initial sample preg@on steps). This is particularly advantageous
to cellular metabolomics for two reasons. Firstlyere is no extra procedure during the cell
harvest stage so that metabolite quenching canep®rmed without any delay. Secondly,
metabolite extraction from cells often involves msteps compared to biofluids, which makes it
more prone to experimental errors. The UV normébra can be used to correct for
concentration variations introduced during the damporkup process. Application of the
dansylation LC-UV normalization method on micromattabolomics has been demonstrated on
bacterial differentiation and the study of butanolerance inSaphylococcus warneri SG1

[34,82].
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More recently, we have adapted this UV absorpti@themd into a dansylation metabolite
assay (DMA), which measures absorbance of labektdbolites using a microwell plate reader,
instead of the more expensive LC-UV system [72)w#s noted that excess dansyl chloride
reagent would interfere with UV measurement if $henple concentration is low. Therefore, the
excess reagent was first quenched with NaOH to edorto the highly hydrophilic product
dansyl-OH, and was then removed by liquid-liquidrastion. The DMA improves throughput
by allowing simultaneous measurement of multipleglas within a short period, and can be
readily implemented because of the low cost anglgimprocedures. We showed good linear
relationships between the UV absorbance valuestlfandell suspension volume or the protein
amount. The validity of this normalization stratedgy metabolomics has been demonstrated by
the improved separation between t#ocoli strains as well as decreased %RSD values within
each strain. This UV absorbance normalization aggrdhas also been applied to mammalian
cells, HEK 293 cell line [83] and yeast cells [84].

As mentioned in Section 4.1, the use of matrix-cethion suppression (MIIS) method
for normalization of cultured cell lines has alsseb demonstrated [32]. The principle is similar
to that used for urine normalization, i.e., to mstie the sample concentration by measuring the
extent of ion suppression induced by the sampleixnaiowever, because metabolite extracts
from 1 x 16 cells represent a more diluted matrix comparedrioe samples, the drying gas
temperature had to be lowered in order to revetiérdnces in the amount of non-volatile
components in different cell extracts. The authben applied this MIIS method on comparative
metabolomics study of two lung cancer cells, CL an@l CL 1-5, with the same cell numbers.
Normalization based on the MIIS measurement redubed mean metabolite fold change

between two cell lines from 2.01 to 1.01, a valbhattis more reasonable considering the
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homeostasis of cell biology. Overall, this studyndastrated the validity of using this MIIS
method for estimation and adjustment of total malislconcentrations in cellular metabolomics
studies. Nevertheless, the applicability of thisthmd depends on the FIA-ESI-MS conditions,
which suggests that optimal experimental paramdtake to be evaluated for different cell
amounts (e.g., 1 x 2@ells) or for different biological samples. In éélth, as indicated earlier,
an expensive MS equipment is needed for ion sigregsurement, while other methods such as

dansylation UV measurement use simpler equipment.

4.3. Normalization of Other Biological Samples

Compared to urine and cellular samples, the needsdmple normalization in other
biological media is far less explored. While blcaratl cerebrospinal fluid (CSF) are considered
homeostatically regulated, there are still a nundbesample types in which proper control of the
solute concentration is absent. For example, thmapka volume of sweat can often vary
depending on the water content, which can be affetty several factors such as ambient
temperature and relative humidity. There is alsgdavariation in sweat production for different
individuals [85]. As commented in a recent reviawsweat metabolomics, the absence of proper
normalization methods to account for the samplema variations presents a major drawback in
the quantitative analysis of sweat [86]. To addtbssproblem, Appenzeller et al. has proposed
the use of sodium and potassium concentrationsoasatization factors for sweat, which is
similar to normalization of urine samples to theieatinine content [35]. They found that the
potassium concentration was highly variable withoth the female group (i.e., sweat samples
collected from all females) and the male group.,(s&veat samples collected from all males),

making this species unsuitable for determinationthef sweat volume. In contrast, the authors
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recommended the use of sodium as an internal sthfiolasweat volume correction because of
its low inter-individual variability. However, sitair to the limitations of creatinine
normalization, this method is also subject to disestates such as cystic fibrosis [87]. Even in
healthy individuals, the sodium concentration mayyy for example, with sweat rate and salt
intake [88]. In addition, the use of a single spedor normalization may not be appropriate in
metabolomics, as discussed previously. Recently, dansylation LC-UV method has been
successfully applied to normalize sweat samplesvi@at metabolomics [36].

Exhaled breath condensate (EBC) is a biospecimanh ith not commonly used in
metabolomics, but can be a promising medium faricdl analysis because of its non-invasive
nature. However, the formation of respiratory detglis not constantly related with the
production of water vapor, which can lead to malkedriable dilution of the respiratory solutes
in EBC [89]. Several efforts have been made tosastee extent of dilution, most of which uses
the concentration of one or more non-volatile, bydhilic respiratory solutes as the dilution
factor. This is based on the assumption that teetdes are diluted to the same factor by the
condensed water vapor [90]. The most commonly uBlkedion marker is urea because of its
even distribution in the body, relatively high stiyp and low volatility [91]. The use of urea as a
dilution indicator has been applied in several &tsI1§i37,92,93]. Other developed parameters for
evaluating dilution include total cation, condudyv[90] and protein concentration [94].
Nevertheless, there is still lack of convincingdance on whether normalizing EBC data with
such dilution markers can provide better reprodlitibamong metabolomic samples, and the
assumption that the change in solute levels onjyedds on dilution may not be valid [95].
Alternatively, data-based normalization methodshsas normalization to MSTUS [38] or to the

total signal of all compounds detected per samBi, [have been applied in metabolomic
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analysis of EBC samples. In particular, PeralboiNokt al. have compared MSTUS with other
three proposed normalization methods for EBC, nwrtied internal standard (IS) response and
the combination of IS response with the collect®CE/olume or the expired EBC volume.
They concluded that MSTUS is the most suited sisateecause it minimizes both intra-
individual variability and methodological varialbyli[38].

Fecal samples represent another biological mediurwhich proper normalization is
required, because they contain both solid anddiquaterials with varying proportions [41].
Even with the same sample weight or volume, theabwite concentration can be different
depending on the liquid content and solid dengiige approach to normalize the metabolite
concentration is by using dry weight, but this @auare is quite time consuming which requires
overnight drying of the samples and individual seempeighing [40]. Alternatively, a universal
approach such as post-acquisition statistical nasthor pre-acquisition UV absorbance
measurement can be applied. As an example, Xu. dtaal applied the dansylation LC-UV
normalization method for the profiling of human deenetabolome and also described a step-
gradient LC-MS method for sample normalization [40ljey observed a wide distribution of the
total labeled metabolite concentration, which rahffem 0.60 to 6.37 mM. Even for the fecal
samples collected from the same individual at thadkerent days, the total concentration of
labeled metabolites can vary by more than 3-foldisTresult highlights the importance of
sample normalization in quantitative fecal metabuts. They found that similar normalization
results could be obtained from LC-UV and step-gratiLC-MS, but the latter was more
sensitive as expected (i.e., >10-fold improvemelnt)case that LC-UV is not available, step-

gradient LC-MS can be used as an alternative mieassmple normalization.
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In addition to the biological samples describedvahthere are still a number of matrices,
such as saliva, tears and bronchial lavage fluldclvmay require proper normalization in their
metabolomic applications. Unfortunately, there &wlimited discussion on normalization of
these biofluids. A more universally applicable nahzation method should be applied. An
example of applying the universal dansylation LC-\éthod on human saliva samples has
been demonstrated in the study of metabolome clamgsociated with mild cognitive
impairment [42]. This method has also been applied sample normalization in plant
metabolomics (Ginseng Roots) [96], milk metabolomiofiling [97] and wine metabolomic

analysis [98].

5. Implementing Sample Nor malization

As discussed earlier, the main objective of samplenalization is to minimize variation
caused by differences in sample concentration ab ttie overall variability within the same
sample group is lowered, and consequently inteygifferences can be more readily measured.
Variability among metabolomic samples mainly comoaf two sources: variations introduced at
the pre-analytical, analytical and data processingk (technical variability) and variations that
are inherent in the samples (biological variabjlifiypically the acceptable technical variability
(expressed as RSD) should not exceed 20% [99] ftaloolite quantification. The biological
variability can be different depending on the bgial samples of interest. For example, for
cultured cell lines or bacterial cells the biolagiwariability within a group is relatively small
[100], while for human biofluids such as urine erwsn the biological variability can be much
greater due to differences in genetics, age, boglghw, diet and many other factors [101]. The

actual observed variability is a combination ofrigical and biological variability. However, if
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the sample concentration varies considerably, theemwed variability can be *“artificially”
boosted. Thus, sample normalization needs to Herpged in a quantitative metabolomics study,
if variations in sample concentrations among thengarative samples are greater than the
analytical technical variation (e.gz, +20%).

Because of the lack of a simple method to measwetdtal concentration of all the
metabolites present in a complex sample, as disdussove, a number of methods based on the
measurement of a selected physical quantity (esgmolality) or chemical quantity (e.qg., total
concentration of dansyl labeled amines and pherfodsh a sample have been reported for
sample normalization with varying degrees of perfance. We envisage that research in the
development of improved or new methods for sampemalization will continue in the
foreseeable future. As analytical techniques aiagbadvanced to become more precise and
more accurate (i.e., < £20%) for quantitative metaime profiling, rapid and accurate sample
normalization method will be required in most, dtrall, metabolomics studies. Practically a
measured physical or chemical quantity that caly treflect the total concentration of all the
metabolites in a sample will serve well as a normatibn factor, with due consideration of
special circumstances that may lead to inaccuraqy.,(administration of un-usual diet that
causes abnormal increases of dietary metaboliteenme biofluid samples within a biomarker
discovery study, engineered metabolite expressianléads to abnormal increase of one or more
metabolites in a comparative cell sample in a t@llmetabolomics study, etc.). Until such a
measurement can be performed routinely for all syplesamples, we would like to recommend
the reader to select a proper method for samplmaaation using Table 2 as a reference. There
are now several options for performing sample ndmagon, as reviewed above. The use of a

proper normalization method for a given projectatefs on the sample type and the availability
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of equipment or software for performing either pegtuisition normalization or post-acquisition
normalization or both.

In selecting a sample normalization method, in gan@re-acquisition normalization is
preferred if such a method is readily available hand, because it improves the overall
information recovery, especially when sample cotregion variation is large (e.g., urine, sweat,
cell extracts, etc.). The information loss by pasttuisition methods depends on the percentage
of metabolites that fail to respond linearly withncentration in a particular sample set and with
a specific analysis method. As an example, Cheh étave shown that close to 25% of the total
detected features display unsatisfactory linedotyurine samples diluted from 1 to 20 fold
based on their LC-MS platform [23]. Nevertheles® would like to recommend a post-
acquisition method to be incorporated into the dateprocessing steps even when a pre-
acquisition method is used, because it can cosmeil errors not addressed by pre-acquisition
sample normalization (e.g., errors introduced dursample processing or detection). For
example, a quick inspection of the total ion chrtogeams generated from LC-MS runs of all
comparative samples can spot any abnormality ssacdmaoutlier or more than expected signal
variations; applying a post-acquisition normali@atimay recover the information to a level

satisfactory for performing quantitative metaboloamalysis.

6. Concluding Remarks

In this review, we have discussed the rational@eforming sample normalization in
guantitative metabolomics and the factors to besiclemed when selecting an appropriate
normalization method for specific applications. \Wave reviewed a number of normalization

methods reported mainly for MS-based metabolonmmcs@mmented on their performances in
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terms of the ability to reduce sample amount viamat the applicability to different types of
biological samples and the convenience to perfdva believe that sample normalization should
be part of the overall metabolomic profiling woddl for quantitative metabolomics, if the
sample amount variation is greater than the amalytrariation (e.g.2 +20%). We hope this
review could serve as a reference to assist inséhection of a proper sample normalization

method for a given metabolomics application.
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Table 2. List of instrument used, advantages and disadvantages of nor malization methods.
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Sample | Normalization I nstrument Advantages Disadvantages
Type M ethods
Urine Creatinine Colorimetric assay - Quick and easyaidgom - Creatinine excretion may not be
- Relatively inexpensive constant, especially in the case of renal
- Low sample consumption impairment
Osmolality Osmometer - Provides the closest measaraghe| - Requires specific instrument that is not
physiology of urinary concentration commonly used in clinical or research
labs
- Result may be affected by sample
inhomogeneity
Specific Refractrometer - Instrument is less expensive apndem Measurement accuracy can |be
gravity easily accessible influenced by many factors such jas
- Quick and easy to perform presence of heavy molecules,
- Provides a fair estimation of urine temperature and pH
solute concentration
Dry mass Freeze dryer - Samples are adjusted teatime mass-  Time consuming, at least 48 h required
concentration before injecting into MS  Drying-reconstitution process may
to reduce variations of matrix effects lead to loss of metabolites
- Easy to perform
Urine volume None - No additional equipment/procedu Time consuming, requires 24 |h
required collection
- Collection and storage process |is
inconvenient and cumbersome
MIIS MS - No additional equipment is needed; the Measurement accuracy can be sensitive

same LC-MS instrument is used for

both normalization and metabolomi
analysis
Relatively quick and easy to perform

CS

to contaminant buildup in ESI sourg

€,

which requires more frequent source

cleaning and maintenance

requires MS instrument time, whic

h

may decrease overall throughput.
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Dansylation LC-UV - High accuracy of measurement - Requires LC-UV equipment
LC-UV - Low sample consumption - Accuracy may be reduced if a disease
- Compatible to dansylation LC-MS could cause large change in t
metabolome profiling concentration of amines and phenols
this stage, there is no known disease
causing this effect)
Total MS - Universally applicable - Requires MS equipment
metabolite - No additional experimental procedyre Cannot adjust LC-MS injection amount
signal required - May not be valid if different number of
metabolites  with  increased
decreased levels
Cdl Cell count Hemocytometer| - Cell number is the nubstct measure- Performed at time of harvest, which gan
extract of the cell amount delay subsequent sample preparatior;
- Generally have larger variations,
especially with small cell numbers
Dry weight Freeze-dryer - Relatively easy to perfor - Drying process is time consuming

Large errors may be introduced with
small sample amount

Total protein

Colorimetric assa

y

High accuracymadasurements
Relatively quick to perform

A separate experiment is required for
protein quantification, which consumes
part of the sample and takes extra time

and

Total DNA Spectrophotometer - High accuracy of nueasients - Requires specific reagents
- Uses the same sample as the apparatus for measuring DNA
metabolomics study - Relatively time consuming (overnight
solubilization)
Housekeeping MS - Fast and convenient to perform - The utility of the housekeeping

metabolites

No additional experimental procedu
required

metabolites has to be validated for each
cell line
Cannot adjust LC-MS injection amount
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MIIS MS - Same as for urine (above) - Same as ffimeuabove)
- May require method optimization for
different cell numbers or cell lines.
Dansylation LC-UV - Same as for urine (above) - Requires LC-&iiipment
LC-UV
Dansylation | Colorimetric assay] - High accuracy of measurement - Requires performing liquid-liquid
Metabolite extraction which can be relatively time-
Assay - Low sample consumption consuming
- Compatible to dansylation LC-MS
metabolome profiling
Total MS - Same as for urine (above) - Same as for urine (above)
metabolite
signal
Sweat Sodium Capillary zone |- Only requires very low sample volume Requires specific instrument
concentration| electrophoresis and a short time for analysis - The assumption of constant sodium
concentration may not be valid
Dansylation LC-UV - Same as for urine (above) - Requires LC-&htiipment
LC-UV
Exhaled Urea MS or urease - Most widely used dilution imdioc for| - MS data is obtained post-acquisition
breath EBC - Measurement by urease incubation is
condensa - No additional experimental procedures inconvenient to perform
te (EBC) if use MS measurement
Total cation lon - Provided comparable dilutignr  Requires specific and expensive
chromatography estimation to urea instruments
Conductivity | Conductivity metef - Less expensivel amore convenient to- Requires lyophilisation to remove yH
perform compared to total cation
measurement
Protein Micro BCA protein| - Standard assay kit readily available| at Correlations between protein and
concentration assay reasonable prices metabolite dilution/condensation

remain to be investigated
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Total MS - Same as for urine (above) - Same aarfoe (above)
metabolite
signal
Fecal Dry weight Heating oven - Relatively easy to parior - Drying process is time consuming
samples Dansylation LC-UV - Same as for urine (above) - Requires LC-eiiipment
LC-UV
Dansylation | Step-gradient LC-|- High accuracy of measurement - Requires LC-MS equipment
LC-MS MS - Very sensitive
- Compatible to dansylation LC-MS
metabolome profiling
Other Dansylation LC-UV - Same as for urine (above) - Requires LC-€iiipment
samples LC-UV
such as
plant
extracts,
milk,
wine
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Figure captions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

General workflow for quantitative metadyk profiling.

Typical workflow of sample normalizatiodormalization can be performed either
pre-acquisition or post-acquisition.

Comparison of MSTUS normalization to ottmmmonly used normalization
strategies. Non-targeted metabolomic analysis veafopmmed on two groups of 12
Sprague-Dawley rats, with six males and six femahegach group. One group
received a low dose (non-toxic) and the other gnageived a high dose (toxic) of a
compound that induces phospholipidosis in this iggecThis figure shows the
resulting PCA score plots of (A) without normalipat (B) normalized to urine
volume; (C) normalized to osmolality; (D) normalize creatinine concentration and
(E) normalized to MSTUS. Open squares: low doseemalpen triangles: low dose
females; solid squares: high dose males; solidndgles: high dose females.
Normalization to osmolality (C) and MSTUS (E) shtlve best separation between
four biological groups and smallest variation witlthe biological replicates. Adapted
from reference [14] with permission.

Box plots showing peak intensity disttibos in (A) non-normalized and (B) median
fold change normalized urine metabolomics datdectdd from 20 male (red) and 20
female (blue) Wistar rats, as well as serially @itbQC urine samples (green). QCD2
to 8 corresponds to 2 to 8-fold dilution of the @&@nples. The box representd'26
75" percentile and the median is shown as a blackafignin the box. The y-axis is

the log?2 ratio of metabolite peak intensities te thedian value calculated across the
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data set. For non-differentially expressed metédmlthe log2 ratios should have a
small spread around zero. In the absence of naratan a large variation in log2
fold change is observed across different biolog&amnples, which is caused by
differences in overall sample concentration. Medfald change normalization
corrects for such concentration variations by adjgsthe median peak intensities
across samples to be approximately equal. As dtremar zero log2 ratios were
observed for the non-differentially abundant melisd® Adapted from reference [26]
with permission.

Figure 5. Schematic illustration of dansylation U&- quantification. (A) The metabolome
samples first undergo derivatization with dansybdhde to attach the dansyl group to
the amine- and phenol-containing metabolites. TBg dansyl moiety is a good
chromophore that “unifies” the absorptivity of I metabolites. As a result, UV
absorption can be measured at the specific abearptavelength of the dansyl group.
A step gradient is used to allow co-elution of kEbeled metabolites, and the
integrated peak area is correlated to a fractiomhef metabolome that reacts with
dansyl chloride (amines + phenols). (C) The metael sample concentration or
volume can be adjusted according to LC-UV quaratian results in order to inject
the same amount from all individual samples into M6 for metabolomic profiling
in a conventional LC-MS workflow. For differentishemical isotope labeling LC-
MS workflow, the LC-UV quantification results care lused to prepare an equal
amount mixture from a labeled sample and a diffeaknsotope labeled control
sample, followed by injecting the same amount oktare into LC-MS for the

comparative samples.
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Sample Amount Normalization

I Pre-acquisition lization I
Vv VIVY

Metabolome samples with different Metabolome samples with different
concentrations or amounts concentrations or amounts

Normalization

Data acquisition

Volume/concentratic
adjustment

Metabolite 1 1.04 061 047 157 227
Metabolite 2 0.24 0.16 0.14 046 0.6

Metabolite 3 116 065 063 159 215

Metabolome samples with same

(*10°)

519 3.03 255 775 109

Data acquisition Adjust signal accordin

to acquired data

Metabolite 1 1.04 102 099 094 112 Metabolite 1 1.04 105 096 1.05 1.08

Metabolite 2 0.25 0.25 0.29 0.3 0.31 Metabolite 2 0.24 0.27 0.28 031 0.29

Metabolite 3 1.14 112 119 121 118 Metabolite 3 1.16 1.11 128 1.06 1.03
Figure 2

Page 51 of 57



Page 52 of 57

52



PC #2

n
L

in
.

PC #2

PC #2

TS
14 —1I0 [; 5 1I0
PC #1
Figure 3

PC=2

-14 A

-15

‘
o

-15

-10 -5 0 5 10 15

Adapted with pernussion from Warrack et al. Joirnal of Chromatography B-dnalvtical

Technologies in the Biomedical and Life Sciences 2009, 877, 547.
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Figure 4

elkov et al. Analvtical Chemistirv 2011, 83. 5864.

Adapted with permission from Ves
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Dansylation
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Highlights
Sample-to-sample amount variation could be lardgen tanalytical variation.
Sample normalization is a critical step in quakititametabolomics.
Sample normalization should be incorporated imtoetabolomic profiling workflow.
There is no unified method; but a number of methualae been reported.

The performance of sample normalization methoddsieebe carefully considered to select a method.
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