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Abstract     

 To reveal metabolomic changes caused by a biological event in quantitative  

metabolomics, it is critical to use an analytical tool that can perform accurate and precise  

quantification to examine the true concentration differences of individual metabolites found in  

different samples. A number of steps are involved in metabolomic analysis including pre- 

analytical work (e.g., sample collection and storage), analytical work (e.g., sample analysis) and  

data analysis (e.g., feature extraction and quantification). Each one of them can influence the  

quantitative results significantly and thus should be performed with great care. Among them, the  

total sample amount or concentration of metabolites can be significantly different from one  

sample to another. Thus, it is critical to reduce or eliminate the effect of total sample amount  

variation on quantification of individual metabolites. In this review, we describe the importance  

of sample normalization in the analytical workflow with a focus on mass spectrometry (MS)- 

based platforms, discuss a number of methods recently reported in the literature and comment on  

their applicability in real world metabolomics applications. Sample normalization has been  

sometimes ignored in metabolomics, partially due to the lack of a convenient means of  

performing sample normalization. We show that several methods are now available and sample  

normalization should be performed in quantitative metabolomics where the analyzed samples  

have significant variations in total sample amounts.       

  

Keywords: metabolomics; quantitative metabolomic profiling; metabolite quantification; sample  

normalization; liquid chromatography; mass spectrometry.   
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1. Introduction  

 Quantitative metabolomics involves the application of analytical, statistical and  

bioinformatic techniques to profile the metabolomes of comparative samples, examine the  

metabolomic changes associated with phenotypes of biosystems from which the biological or  

clinical samples are taken, and investigate the roles of significant metabolic changes in the  

biosystems including functional studies and/or discovery of chemical biomarkers of phenotypes.  

NMR and mass spectrometry are two primary tools for metabolomic analysis [1,2]. However,  

compared to NMR, MS is increasingly being used for metabolomics due to higher detection  

sensitivity and larger metabolome coverage [3,4]. MS, in combination with isotope standards or  

isotope labeling of samples, can also produce quantitative information on metabolites [5-7].  

While absolute quantification is important for targeted analysis of individual metabolites of  

interest in applications such as validation of a potential metabolite biomarker, only relative  

quantification of metabolites is available in high-coverage discovery metabolomics with a focus  

on discovering one or set of metabolite biomarkers of a phenotype such as a disease and  

functional metabolomics with a focus on investigating the functional roles of metabolites in a  

biological system. Relative quantification measures the relative quantity differences of an  

individual metabolite as expressed by the metabolite’s peak intensity variations in comparative  

samples. It does not require the use of standards and thus can be used for untargeted analysis  

without knowing the identities of the metabolites a priori [8-10]. In general, a much larger  

number of metabolites can be profiled by relative quantification, particularly in liquid  

chromatography (LC) MS-based techniques [10].  
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 Figure 1 shows the general workflow for quantitative metabolome profiling. There are  

three major steps: pre-analytical work, analytical work and data analysis. In pre-analytical work,  

processes such as sample collection, sample pre-processing and sample storage need to be  

carefully carried out in order to maintain the sample integrity prior to chemical analysis [11]. For  

example, proper storage of samples such as immediate freezing and storing at -80°C for biofluids  

is important to minimize concentration changes of metabolites due to enzyme activities or other  

physicochemical processes after sample collection [12,13]. In the analytical workflow, there are  

several steps involved, including, in no particular order, sample processing such as removal of  

interfering components (e.g., proteins), chemical derivatization if needed, spiking reference  

standards or reference control-sample, buffering or adjusting solvents or pH of the sample  

solution, and analyzing the processed samples using NMR or MS. After data acquisition from all  

the samples, data processing and analysis are employed to extract information on identity and  

absolute or relative quantity of individual metabolites.   

 Each step or process listed in Figure 1 needs to be carefully carried out or controlled in  

order to produce accurate and precise quantitative data that reflect the true concentration  

differences of individual metabolites in the samples. This review focuses on the discussion of  

sample normalization. Sample normalization refers to a process to adjust the sample volume or  

concentration prior to data acquisition or adjust the acquired signals after data acquisition to  

equalize the total signals of metabolites in individual comparative samples (see Figure 2). For the  

latter, the total signals detected are assumed to be related to the sample amount injected and thus  

normalizing the signal intensity is thought to be equivalent to normalizing the sample amount.  In  

this review, the importance of performing sample normalization in quantitative metabolomics is  

first discussed. Several considerations in the development and usage of a proper sample  



Page 6 of 57

Acc
ep

te
d 

M
an

us
cr

ip
t

6 

 

 

normalization strategy for metabolomic profiling are described. A survey of methods reported  

for sample normalization including their relative merits for metabolomics is presented. Finally,  

because there are no unified views on how best one can perform sample normalization in  

quantitative metabolomics, we comment on implementing sample normalization in current  

practices, which may help future development of a more unified sample normalization method as  

part of standard operational procedure (SOP) for metabolomic profiling.   

  

2. Importance of Sample Normalization     

 Because the major goal of quantitative metabolome profiling is to determine the  

concentration differences of individual metabolites in two or more comparative samples, the size,  

weight or volume of individual samples can significantly affect the relative quantification results.  

For example, in a biofluid such as urine, the total concentration of metabolites in a sample herein  

denoted as sample concentration can differ by more than 14-fold [14]. The term, concentrated or  

diluted urine (or any other type of sample), refers to a urine sample with high or low "total  

concentration" of metabolites, respectively. Even for the same individual, the urine sample  

concentration can vary greatly, depending on water intake, diet and excretion via, for example,  

sweating. Because urine concentration can be influenced by external factors, in clinical field, this  

varying factor is often controlled by using a reference analyte inherently present in all urine  

samples. Creatinine is the most commonly used reference and the assumption is that creatinine  

concentration reflects the urine concentration [15]. A diluted urine would have a lower creatinine  

concentration and vice versa. The measured absolute concentration of an individual metabolite  

(e.g., glucose) is divided by the creatinine concentration which can be readily measured in urine  

using a commercial assay kit. The concentration of the metabolite is reported as x mM (or  
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µM)/creatinine [16]. In other words, the metabolite concentration is normalized to the creatinine 

concentration and the normalized concentration is then compared to a reference range to 

determine whether the metabolite concentration is within the normal range or not. Thus, sample 

concentration or amount normalization is a well recognized and commonly practiced process in 

urinary metabolite measurement in clinical field. As many metabolomics studies are in the area 

of discovering potential biomarker(s) of a disease, it makes sense to conform the practice of 

metabolome measurement to the clinical norm to produce clinically acceptable and useful results.  

 For urinary metabolomics, creatinine measurement could be used for sample 

normalization, although other methods have been developed for the same purpose (see below). 

However, for many other biofluids or biological samples, there is no known compound that is 

widely accepted as a reference for sample normalization. The sample concentration of feces, 

sweat, bronchial lavage fluid, etc., can vary greatly. The cell extracts or tissue extracts can also 

have different total amounts of metabolites, depending on several factors including the number 

of cells sampled, cell lysis efficiencies, composition of cells, and cell density in tissue for tissue 

samples. If only a fixed volume (e.g., 5 µL of sweat), weight (e.g., 1 mg of dried feces), or size 

(e.g., a tissue of 2 mm long × 2 mm wide × 10 µm thick) is taken from each individual sample 

for metabolomic comparison, it is impossible to delineate the contributing factors in the 

measured concentration differences of individual metabolites. The measured differences can be 

due to the sample concentration differences, the nested underlying differences caused by a true 

differentiating factor such as a biological event (e.g., a mutation in cells or a disease in clinical 

samples), or a combination of the two. Because we want to determine the metabolite 

concentration changes caused only by a biological event, not by a non-biological factor, sample 
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normalization prior to analyzing all the individual samples should be considered as a critical and 

necessary step in the overall metabolomic profiling workflow.  

     

3. Performance Considerations in Sample Normalization 

Compared to genomics and proteomics, sample normalization in metabolomics is much 

more challenging because of the greater diversity of metabolite structures. To date, there is no 

standard method for measuring the total amount of metabolites directly in a way similar to that of 

total protein amount measurement commonly used in proteomics (e.g., bicinchoninic acid assay). 

Alternatively, other indirect or partial physical or chemical property measurement methods have 

been reported to relate the measured values or quantities to the total metabolite amount for 

sample normalization (see next section). In developing or applying a sample normalization 

method for metabolomics, the overall performance of the method is often assessed by the ability 

of the method to minimize variations within the same group of samples. The easiest and most 

common way of evaluating the variations is through principal component analysis (PCA) score 

plot. An optimal sample normalization method should display the shortest distance between 

samples within the same biological group and the greatest separation between samples from 

different groups. Comparing the intra-group’s relative standard deviations (RSD) or the number 

of discriminant features found can also be used to evaluate the method performance. Smaller 

RSD or less discriminant features within a group is desirable. For targeted metabolome profiling, 

a series of standard compounds can be spiked at different concentrations into the comparative 

samples while maintaining the same total spike-in amount. The ability of a sample normalization 

method to detect the differences in spike-in data can then be evaluated. This approach has been 

used in a NMR-based metabolomics study [17].  
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Besides intra-sample variability comparison, the normalization accuracy should also be  

assessed. This can be done by normalizing a series of samples with known dilution, and then  

evaluating whether signals of a particular compound in diluted samples have been brought back  

to the original value and how accurate the adjusted value is. In developing a new normalization  

method, it is also important to establish a correlation between the new method and the  

conventional normalization approaches, as a part of method validation. It is assumed that under  

normal circumstances (e.g., healthy individuals), results obtained from different normalization  

methods should show positive correlations with each other. For example, in the methods to be  

discussed later, correlation between MS “total useful signal” (MSTUS) and osmolality  

normalization factors was determined to be R2 = 0.71 [14], correlations between UV absorption  

of dansyl labeled metabolites and creatinine or osmolality were R2 = 0.95 and 0.90, respectively  

[18], and correlation coefficients for matrix-induced ion suppression (MIIS) method with  

creatinine and osmolality were 0.93 and 0.99, respectively [19].  

In addition to method validity, there are several other considerations that also need to be  

taken into account before selecting an appropriate normalization method for a particular  

application, as discussed below.  

It is important to decide whether the normalization step is performed pre-acquisition or  

post-acquisition (see Figure 2) [20]. In pre-acquisition methods, the volumes of biological  

samples are adjusted according to the measured quantities (e.g., creatinine concentrations) to  

equalize the total sample concentration for all samples. By taking the same volume of aliquot  

from each sample, the same amount is used for analysis by NMR or MS. Alternatively, instead  

of adjusting the sample volume, different volumes of samples according to the measured  

quantities are taken to ensure the same amount used for metabolome analysis. In contrast, in  
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post-acquisition methods, the sample amounts are not experimentally normalized and thus the  

total injection amounts used for metabolomic profiling are different, resulting in different overall  

NMR or MS signals. The individual metabolite signals are then adjusted or normalized for  

different samples based on a certain criterion such as the total ion signal intensity of a  

chromatogram from a sample.  

Because the same amount is used for sample analysis, a major advantage of pre- 

acquisition normalization is that similar instrumental responses can be obtained for all samples.  

This is important for MS-based methods. In electrospray ionization (ESI) MS, responses of  

individual metabolites are often non-uniform at different concentrations because of different  

ionization efficiencies and different degrees of ion suppression. As a result, the analyte signals  

may not necessarily be linearly scaled with the metabolite concentration in a complex biological  

matrix. Thus, by adjusting all the comparative samples to the same total concentration, more  

accurate quantitative results will be produced. Another advantage of pre-acquisition method is  

that the measured quantities from the samples can be used to control the sample injection amount  

in NMR or MS analysis. In this way, an optimal sample amount can be used for metabolomic  

profiling. For example, in LC-MS, it is important to keep the injection amount optimal in order  

to increase the probability of detecting low concentration metabolites [21,22], while avoiding the  

over-injection problem that can cause signal saturation and sample carryover.  

Comparisons between pre-acquisition and post-acquisition methods have been reported.  

For example, Chen et al. showed that for five serially diluted rat urine samples, post-acquisition  

normalization methods failed to overcome urine variability because of the nonlinear response to  

sample dilution caused by ion suppression or saturated metabolites. On the other hand, pre- 

acquisition correction was effective for reducing variations introduced by different urine  
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concentrations. They also demonstrated that pre-acquisition injection volume calibration is  

superior in reducing intra-group bias in the presence of biological variations [23]. Similarly, the  

study performed by Edmands et al. suggested that pre-acquisition normalization is a better choice  

for biological information recovery as it identified the largest number of discriminant MS  

features when compared to three post-acquisition normalization methods [20]. However, the  

downside of pre-acquisition normalization is that an additional experimental step is required in  

the overall workflow. In addition, an extra amount of sample may be required for measuring the  

quantities, as this sample aliquot may not be used for metabolome analysis. Post-acquisition  

methods avoid these pitfalls and are relatively more convenient and quicker to perform, as long  

as a software program to properly extract the quantitative information from the acquired data is  

available. Nevertheless, it should be kept in mind that the performance of post-acquisition may  

be compromised by variations in detection responses, as described above.   

Another factor to be considered is the ease of operation, particularly for pre-acquisition  

normalization, since an extra step is required. In metabolomics, using a large number of samples  

is preferred in order to create valid statistical models and to obtain more accurate biological  

information [24]. However, the number of samples to be analyzed is often not only limited by the  

availability of biological samples, but also the overall analytical time and efforts required. The  

latter is affected by the complexity of sample preparation protocols as well as the length of  

analysis time per sample. In this regard, it is desirable to keep the normalization method simple,  

quick and convenient to perform so that it would not restrain the use of a large sample set for  

metabolomics.   

The selection of a proper normalization method also depends on the type of biological  

sample to be analyzed. Some methods are only applicable to specific biological media while  
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others are more generic. For example, normalization to creatinine is based on the relatively  

constant excretion rate of creatinine through glomerular filtration, and is therefore only  

applicable to urine specimens. On the other hand, normalization to MS “total useful signal”  

(MSTUS) uses the total intensity of peaks that are present in all samples under study as the  

normalization factor, and it is thus more universally applicable. While a specific method  

targeting one type of samples may be more efficient on occasions for its targeted biological  

medium, a generic normalization method should be more desirable because of its adaptability to  

various sample types and the ease of method transfer from one type of biological matrix to  

another.  

From the above general discussion, it is clear that, when we judge the utility of a sample  

normalization method, several factors including applicability of the method for the biological  

samples on hand, normalization accuracy, convenience, speed and cost of performing  

normalization need to be considered. In the following section, we will review the reported  

normalization methods for MS-based metabolomics studies and discuss their performance  

according to these factors.   

  

4. Methods for Sample Normalization  

Over the past several years, a number of sample normalization methods have been  

reported for metabolomics applications. Table 1 provides a summary of the reported methods for  

sample normalization, while Table 2 summarizes the advantages and disadvantages of each  

method, with a focus on the instrument availability, time and convenience to perform  

measurement, as well as the method validity.   
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Table 1. Summary of sample normalization methods used in MS-based metabolomics. 

Sample Type Normalization 
Methods 

Pre- or Post-
acquisition  

Recommended 
method  

Reference  

Cattle urine Specific gravity 
Freeze-drying 

MSTUS1 

Pre 
Pre 
Post 

Similar 
performance for 
all three methods 

Jacob et al. [25] 

     
Rat urine Urine volume 

Osmolality 
Creatinine  
MSTUS 

Post 
Post 
Post 
Post 

Osmolality and 
MSTUS  

Warrack et al. [14] 

Rat urine Total intensity 
Median fold change 

Quantile 
LOESS2 

Post 
Post 
Post 
Post 

Median fold 
change  

Veselkov et al. 
[26] 

Rat urine MSTS3  
MSTUS 
MSGUS4 

Urine volume 

Post 
Post 
Post 
Post 

Urine volume  Godzien et al. 
[27] 

Rat urine 
 

All MS signals 
MSTUS 

Creatinine value 
Creatinine peak area 

Creatinine value 
Creatinine value + 

all MS signals 
Creatinine value + 

MSTUS 

Post 
Post 
Post 
Post 
Pre 

Pre + Post 
 

Pre + Post 

Creatinine value 
+ all MS signals 
and Creatinine 

value + MSTUS 

Chen et al. [23] 

Human urine Specific gravity 
Specific gravity 

Median fold change 
Urine volume 

Pre 
Post 
Post 
Post 

Pre-acquisition 
normalization to 
specific gravity  

Edmands et al. 
[20] 

Human urine MSTUS Pre - Mattarucchi and 
Guillou  [21] 

Human urine Conductivity 
LOESS 

Post 
Post 

LOESS Gonzalez-
Dominguez et 

al.[28] 
Human urine MIIS5 Pre - Chen et al. [19] 
Human urine UV absorbance Pre - Wu and Li [18] 
Adherent cell 

line 
(OVCAR-8) 

Total protein 
Cell count 
Total DNA 

Post 
Post 
Post 

Total DNA Silva et al. [29] 

Adherent cell Protein content Post  Similar Cao et al. [30] 
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line (MDCK) Metabolic markers Post performance for 
both methods 

Adherent cell 
line (MCF-7) 

Cell count 
Sum of peak areas 

Post 
Post 

Similar 
performance for 
both methods 

Hutschenreuther et 
al. [31] 

Human cell 
lines 

MIIS Pre - Chen et al. [32] 

Cyanobacteri
al strains 

Chlorophyll a 
Total protein 

Glycogen 
sIC6 

sIC.907 
sIC.AA8 

Post 
Post 
Post 
Post 
Post 
Post 

Similar 
performance for 
all six methods 

Huege et al. [33] 

E. coli UV absorbance Pre - Wu and Li [34] 
Sweat Na concentration Pre - Appenzeller et al. 

[35] 
Sweat UV absorbance Pre - Hooton and Li 

[36] 
EBC9 Urea Post - Esther et al. [37] 
EBC MSTUS 

IS response 
IS response + 
collected EBC 

volume 
IS response + 

expired EBC volume 

Post MSTUS Peralbo-Molina et 
al. [38] 

EBC Sum of all areas Post - Fernandez-
Peralbo et al. [39] 

Dog fecal 
samples 

Dry weight Post - Guard et al. [40] 

Human fecal 
samples 

UV absorbance Pre - Xu et al. [41] 

Saliva UV absorbance Pre - Zheng et al. [42] 
  

1. MSTUS: MS total useful signal; 2. LOESS: Locally weighted scatter plot smoothing; 3.  

MSTS: MS total signal; 4. MSGUS: MS group useful signal; 5. MIIS: Matrix-induced ion  

suppression; 6. sIC: selected ion count for all metabolites; 7. sIC.90: selected ion count for 90%  

of the non-extreme metabolite pools; 8. sIC.AA: selected ion count for the total amino acid  

content. 9. EBC: exhaled breath concentrate. 10. IS: internal standard.  
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4.1. Normalization of Urine Samples  

Urine is one of the most commonly investigated biofluids in metabolomics, because it  

can be easily and non-invasively collected in large quantities, and the sample is relatively clean,  

requiring a simple pre-treatment procedure [15]. Unfortunately, urinary solute concentrations  

often vary widely depending on hydration status, time since previous urination, dietary intake or  

other physiological factors [43,44]. Thus, it is not surprising that the majority of research efforts  

on normalization method development actually target specifically at urine samples. The most  

widely accepted approach for urine volume correction is to express metabolite levels relative to  

creatinine concentration [45-47], because the rate of creatinine excretion through glomerular  

filtration is relatively constant under normal conditions within or across individuals [48].  

However, the assumption of constant creatinine excretion is often invalid, as creatinine excretion  

was found to vary across individuals due to age, gender, race and muscle mass differences or  

disease states [49-52]. Even within the same individual, the urine creatinine level may change  

depending on diet, time of day, level of exercise, and physiological conditions [53-55]; the  

number of subjects used for these studies ranged from 4 individuals over 13 days [53], 7  

individuals over 90 days [54], to 11 individuals over several months [55]. As a result, the validity  

of using creatinine concentration as the normalization factor is often challenged [56]; in the work  

of Alessio et al [56], 376 individuals were studied. In another example, Burton et al. showed that  

normalization of urinary pteridines to creatinine did not improve differentiation between benign  

and malignant breast cancer samples, and the authors suggested that alternative renal dilution  

factors are needed (urine samples of 25 individuals were used in the study) [57]. In addition, it is  

also questionable whether it is sufficient to normalize the wide range of metabolites based on a  
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single compound [58]. Future work is still needed to determine whether the use of a large  

number of subjects per cohort in a metabolomic study could overcome some creatinine-level- 

abnormalities associated with a fraction of the samples to produce reliable metabolomic profiling  

results. Nevertheless, because of the convenience and low cost in creatinine measurement,  

creatinine normalization prior to LC-MS acquisition can still be useful in controlling injection  

volumes to ensure that urine samples are injected at comparable levels, and that similar  

instrumental response is warranted for all samples. If creatinine normalization alone is not  

sufficient due to variations in creatinine excretion rate, post-acquisition remedy can be applied to  

further improve the results. As an example, in a recent study of rat urine (n = 5 in the absence of  

biological variation and n = 32 in the presence of biological variation), it was demonstrated that  

injection volume calibration based on creatinine value prior to LC-MS analysis is effective in  

adjusting urinary solute concentrations to similar levels. This pre-acquisition normalization  

method significantly reduces intra-group variations as indicated by better clustering in principle  

component analysis (PCA) score plots and reduced peak area relative standard derivations (RSDs)  

in intra-group comparisons [23].  

Urine osmolality is a direct measure of the total urinary solute concentration that is only  

affected by the number of particles in urine. Therefore, it is often considered as a gold standard  

for estimating urinary concentration [59], and has been used as a valid scaling factor for urinary  

solutes [60,61]. Application of osmolality normalization in urinary metabolomics analysis has  

been reported, which showed better separation between different biological groups as well as  

reduced variations within biological replicates when compared to no normalization or  

normalization to urine volume and creatinine [14]. However, the procedure of measuring  

osmolality is often not practically available, and thus specific gravity is usually measured,  
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instead, as an estimation of osmolality [59]. Urine specific gravity is the ratio between the 

density of urine and that of pure water at a constant temperature, which can be measured either 

directly by gravimetry or indirectly by refractometry. Specific gravity has been used as a 

normalization method for urinary metabolites in many applications [43,62,63]. Recently, the 

feasibility of using specific gravity as a normalization strategy in urine metabolomics has been 

assessed by Jacob et al. [25] in comparison with freeze-drying, a valid normalization strategy for 

anabolic practices in cattle [64,65]. The authors have showed that normalization by specific 

gravity improved separation between two study groups and revealed the same differentiating ions 

as the freeze-drying method, and they thus proposed that specific gravity can be used as an 

alternative to the time-consuming freeze-drying for urine metabolome normalization. Besides 

creatinine, osmolality and specific gravity, other conventional urine normalization methods 

include normalization to 24-hour urine volume, [14,66] conductivity [28] and flow rate 

correction [67]; but these methods are used less often and will not be further elaborated here.  

Post-acquisition or data-driven normalization approaches have been used for some 

metabolomics studies in recent years. Warrack et al. have proposed the idea of using the total 

intensity of peaks that are common to all samples, known as MS “total useful signal” (MSTUS), 

as the scaling factor [14]. This concept is similar to the use of total integrated proton signal for 

normalization in proton NMR-based metabolomics analysis [68]. Incorporation of only “useful 

signals” ensures that contributions from xenobiotics and artefacts are minimized. The authors 

have compared MSTUS normalization to other common normalization approaches in the non-

targeted metabolomic profiling of rat urine from different dose groups. They recommended both 

MSTUS and osmolality for detection of significant metabolic changes as these methods are most 
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efficient in differentiation between high and low dose groups (see Figure 3). Since reported in 

2009, MSTUS normalization has been employed in several applications [21,27,69].  

In addition to MSTUS, more sophisticated statistical strategies have been introduced. For 

example, Veselkov et al. have compared four normalization techniques [26]. The first two 

methods, based on total intensity and median fold change, respectively, assume that metabolite 

peak intensities vary linearly with concentration, while the other two approaches, quantile and 

locally weighted scatter plot smoothing (LOESS), consider peak-intensity-dependent scaling 

factors (i.e., in the presence of ion suppression or saturation). They found that for the majority of 

urinary metabolites, the peak intensities did not respond differentially to dilution, which supports 

validity of the first two methods (i.e., measuring total intensity and median fold change). In 

terms of normalization performance, all four methods perform equally well in the absence of 

biological variation. However, when biological variation is considered, the performance of total 

intensity normalization is slightly inferior due to variations in total metabolite output between 

samples. Despite the comparative effectiveness of the other three methods, the authors 

recommended the median fold change approach because of its relaxed assumption with regard to 

the proportion of asymmetrical metabolite changes. The effect of median fold change 

normalization in the presence of biological variation is illustrated in Figure 4. 

More comprehensive evaluations of statistical treatments have been discussed by Ejigu et 

al. [70]. In general, the advantage of data-driven approaches over conventional urine 

normalization methods is that the methodology is not restricted to urine samples and can be 

readily adapted to other types of biological matrices. However, since the scaling factor is based 

on MS data, the normalization process has to be performed after LC-MS analysis. As discussed 

before, post-acquisition normalization cannot control the amount of sample injected into the 



Page 19 of 57

Acc
ep

te
d 

M
an

us
cr

ip
t

19 

 

 

mass spectrometer, and therefore cannot be used to alleviate problems associated with varying 

injection amount such as signal saturation, ion suppression and missing values from low 

abundance or not easily ionizable metabolites. Although pre-acquisition MSTUS has been 

proposed by Mattarucchi et al. to improve the quality of extracted LC-MS data [21], it requires 

LC-MS acquisitions to be performed for all samples prior to metabolomics analysis in order to 

obtain MSTUS values. This would increase the workload considerably and is not practical for 

analyzing a large number of samples.  

Recently, Chen et al. have proposed a novel idea of using MS signals for pre-acquisition 

urine normalization [19]. The method is based on measuring the extent of ion suppression 

induced by urine matrix on a spiked indicator compound (hexakis), using flow injection analysis 

electrospray ionization mass spectrometry (FIA-ESI-MS). The authors have shown that the level 

of ion suppression is proportional to urine concentration, and therefore a regression equation can 

be established to estimate the relative concentration of unknown urine samples. Application of 

this method has been demonstrated on the urine metabolomics study on breast cancer. Overall, 

this matrix-induced ion suppression (MIIS) method provides high sample throughput and can 

also be fully automated. The applicability of this approach has also been demonstrated on cell 

cultures (see below), but remains to be investigated for other biological matrices. One advantage 

of this method over other methods such as osmolality or specific gravity measurement is that no 

additional instrument is required as the same MS used for metabolomic profiling is employed for 

ion suppression measurement (see Table 2). On the other hand, this is also a disadvantage, 

because an expensive MS instrument is used for measuring the ion signals for sample 

normalization. 
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Another concept for sample normalization is to determine the UV absorbance of the  

sample solution as a measure of the total concentration of solutes that absorb at the specific  

wavelength. This type of normalization approach is more representative of the overall sample  

composition compared to the use of a single compound such as creatinine, and is independent of  

the biological medium. In addition, UV measurement can be performed prior to LC-MS analysis  

to allow injection amount adjustment. Kemperman et al. has reported normalization of urine  

samples to the area under the curve at 214 nm (AUC214) and showed that this method is preferred  

to creatinine normalization for minimizing peak area and intensity variations of peptides [58].  

However, for metabolites with varying structures, the 214 nm measurement may not reflect the  

total concentration of all metabolites in a sample.   

We have developed a method of determining the total metabolite concentration based on  

the use of chemical labeling to attach a UV absorbing dansyl moiety to amines and phenols,  

followed by a rapid step-gradient LC-UV detection of the labeled metabolites at 338 nm [18].  

The concept is shown in Figure 5. Although a derivatization step is required in this method, the  

derivatization reaction is simple to perform and takes about one hour. It can also be performed  

simultaneously for labeling multiple samples. Derivatization is widely used for other  

normalization methods such as BCA assay and Bradford assay in protein quantification and  

creatinine measurement in urine. Because labeling efficiencies of amines and phenols in different  

samples of the same matrix such as urine are similar, accurate relative quantification of amines  

and phenols from the UV measurement of the labeled products can be achieved [71].  In addition,  

the labeled metabolites can be directly analyzed by LC-MS, if dansylation isotope labeling LC- 

MS is used for profiling the amine/phenol submetabolome. One disadvantage of this method is  
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that it requires an LC-UV equipment. However, in a recent work, microwell plate reader was  

used for measuring UV absorbance (see below) [72].   

We have shown that this normalization strategy effectively corrects for the dilution effect  

in intra-day urine samples and minimizes artificial separation caused by the variations in the  

original urine concentrations. Although parallel comparison with other normalization methods  

was not performed, we did observe a good correlation between the UV absorbance and creatinine  

or osmolality values. It should be noted that this dansylation LC-UV normalization method is  

based on the assumption that the total concentration of labeled metabolites composed of mainly  

amines and phenols is linearly related to the total concentration of all the metabolites in a sample.  

Whether this assumption is generally true for all the samples remains to be determined. Although,  

at this stage, we do not know with certainty any disease that would cause a biased change in the  

total concentration of amines and phenols, it may happen under special circumstances such as  

proteinuria and unusual diet, and such a biased change would affect the accuracy of the  

normalization method. However, if there are only a few exceptions (e.g., due to the presence of  

one dominant compound [58]) out of a large cohort of samples where the determined sample  

amount is slightly different from the rest of the samples, a post-acquisition method can be  

applied to improve the overall data quality. For example, Chen et al. have illustrated that the  

combination of pre-acquisition injection amount calibration based on creatinine values and post- 

acquisition MSTUS normalization provides the best results in overcoming urine sample  

variability [23].  

  

4.2. Normalization of Cell Extracts  
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Cellular metabolomics plays an important role in systems biology and has found  

applications in many areas such as toxicology and preclinical drug testing in which ex vivo  

models are required [73,74]. In cellular metabolomics, it is often of interest to investigate  

quantitative metabolic changes in response to different environmental stimuli. Unfortunately, it  

is difficult to control the amount of cells harvested from different culture mediums or plates due  

to variations in seeding density and/or treatment conditions [30]. For example, exposure to toxic  

compounds such as 2,3,7,8-tetrabenzodi-p-dioxin (TCDD) may lead to decreased cell  

proliferation rate and subsequently lowered overall metabolite level [75]. The same problem is  

also encountered in microbial metabolomics where comparative metabolomic analysis of  

bacterial species under different environmental conditions is studied or a metabolome profile is  

used for microorganism differentiation and identification. Therefore, sample normalization of  

mammalian and microbial cell extracts is important.   

For mammalian cells, cell counting using a hemocytometer is commonly used for cell  

amount normalization. In the case of adherent cells, detachment of the cells from the culture  

flask is required, typically by using trypsinization or direct scraping. Trypsinization is considered  

less suitable for metabolomics because it can lead to changes in the cellular metabolome profile  

[76] or introduce metabolomic artifacts [77]. Direct scraping is more labor-intensive and can  

often result in loss of cells. In addition, the accuracy of cell counting normalization method is  

often impaired by inhomogeneity of the cell suspension, and random variations introduced  

during aliquoting and transfer process [31]. Moreover, since this method is performed at the time  

of harvest, it would delay subsequent quenching procedure and may result in alterations in the  

metabolic profile. For bacterial cells, direct counting of the cell number is difficult to implement  

because of their small sizes.  Alternatively, optical density at 600 nm (OD600) is often determined  
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as a measure of the light scattered by a culture, and the OD600 value is then correlated to a known  

colony number to estimate the amount of cells. As an example, Marcinowska et al. have shown  

that normalization to OD600 values provides a robust basis for quantitative analysis and  

differentiation of clinically relevant bacterial cells [78]. While this method is applicable to  

homogeneous cell suspensions, it may not be as convenient for adherent cell cultures. Besides,  

similar to direct cell counting, additional time is required to perform the measurement before cell  

sample preparation.   

Other conventional approaches for cell amount determination include measurement of the  

dry weight of cell debris and quantification of the total protein content [79]. The dry weight  

method is time-consuming and is not preferred for metabolomics studies in which a large number  

of samples need to be processed. Also, relatively large errors may be introduced in dry weight  

measurement when the sample amount is small [33]. The protein amount can be readily  

determined using well-established colorimetric methods such as BCA assay and Bradford assay,  

and has been used in several applications for studying cellular metabolic changes [80,81].  

However, Silva et al. have shown that the protein concentrations of both the metabolite  

extraction solution and the remaining cell pellet failed to produce expected correlations with  

seeded cell number, due to poor protein recovery in metabolomics-compatible solvents and  

incomplete protein re-solubilization from the pellet [29]. Therefore, assaying the protein amount  

would require a separate experiment to be performed in order to obtain accurate quantitation  

results, which is not desirable as it consumes part of the samples and prolongs the sample  

preparation process. Instead, the authors have proposed the use of DNA concentration as the  

normalization factor for metabolomic data, as they have demonstrated good correlation between  

DNA concentration of the cell pellet and seeded cell number for four adherent cell lines. Despite  
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the reported efficiency and robustness of this method, examples of how normalization to DNA  

concentration could improve statistical analysis in metabolomics were not given in this work.    

In recent years, several data-based normalization strategies have also been introduced for  

cellular metabolomics. One approach involves the use of specific metabolic markers as the cell  

amount indicator [30,33,75], with the assumption that the concentrations of these selected  

metabolites are directly proportional to the cell number and are independent of the treatment  

conditions under study. For example, Cao et al. has identified pantothenate and inositol as the  

best candidate markers for normalization of Madin–Darby canine kidney (MDCK) cells based on  

three criteria: good linearity between the metabolite signal intensity and the cell amount for  

serially diluted cell suspensions, high linear correlation between the metabolite abundance and  

the protein content for cells seeded at different concentrations, and improved separation between  

two cell lines and closer clustering within each cell line. In general, the use of single or a few  

metabolic markers is simple, fast and convenient. However, it should be noted that the same  

metabolite markers are not necessarily applicable in other cellular systems, as their cell line and  

treatment independence may not always hold true. Therefore, the validity of these metabolic  

markers for other studies requires further assessment, which poses a limitation to the utility of  

this normalization method.   

Alternatively, the use of total metabolite intensity is often considered as a more robust  

way of estimating the cell number. Huege et al. have evaluated the normalization effects of three  

total intensity parameters, namely the intensity sum of all metabolites, the intensity sum of 90%  

non-extreme metabolites and the intensity sum of amino acids and their conjugates, in  

cyanobacterial metabolomics [33]. It was concluded that these three normalization factors are  

essentially equivalent in terms of their influence on sample cohesion within strain groups and  
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separation among different strains. Hutschenreuther et al. have also evaluated the performance of  

peak area sum normalization in comparison to cell count [31]. They observed a good linear  

correlation between sum of peak areas and cell count within a specified linear range. However,  

they noted that this normalization method should only be applied when the cell extract  

concentration in two comparative samples differs by less than two-fold, as otherwise the number  

of “false significants” would increase to over 10%. This is likely attributed to the fact that not all  

metabolites exhibit linear response with concentration (e.g., presence of borderline metabolites  

and ion suppression effect). Therefore, the authors suggested that similar extract concentrations  

should be used for comparison in cellular metabolomics. This conclusion is in accordance with  

our earlier discussion on the importance of pre-acquisition normalization.    

As we discussed in Section 4.1, normalization to UV absorbance of the sample solution is  

independent of the biological matrix and is performed prior to MS acquisition, which makes it a  

promising approach for cell amount adjustment. In addition, when incorporated into the LC-MS  

metabolome profiling workflow, this normalization step is usually carried out immediately  

before LC-MS (i.e., after all initial sample preparation steps). This is particularly advantageous  

to cellular metabolomics for two reasons. Firstly, there is no extra procedure during the cell  

harvest stage so that metabolite quenching can be performed without any delay. Secondly,  

metabolite extraction from cells often involves more steps compared to biofluids, which makes it  

more prone to experimental errors. The UV normalization can be used to correct for  

concentration variations introduced during the sample workup process. Application of the  

dansylation LC-UV normalization method on microbial metabolomics has been demonstrated on  

bacterial differentiation and the study of butanol tolerance in Staphylococcus warneri SG1  

[34,82].   
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More recently, we have adapted this UV absorption method into a dansylation metabolite  

assay (DMA), which measures absorbance of labeled metabolites using a microwell plate reader,  

instead of the more expensive LC-UV system [72]. It was noted that excess dansyl chloride  

reagent would interfere with UV measurement if the sample concentration is low. Therefore, the  

excess reagent was first quenched with NaOH to convert to the highly hydrophilic product  

dansyl-OH, and was then removed by liquid-liquid extraction. The DMA improves throughput  

by allowing simultaneous measurement of multiple samples within a short period, and can be  

readily implemented because of the low cost and simple procedures. We showed good linear  

relationships between the UV absorbance values and the cell suspension volume or the protein  

amount. The validity of this normalization strategy for metabolomics has been demonstrated by  

the improved separation between two E. coli strains as well as decreased %RSD values within  

each strain. This UV absorbance normalization approach has also been applied to mammalian  

cells, HEK 293 cell line [83] and yeast cells [84].  

As mentioned in Section 4.1, the use of matrix-induced ion suppression (MIIS) method  

for normalization of cultured cell lines has also been demonstrated [32]. The principle is similar  

to that used for urine normalization, i.e., to estimate the sample concentration by measuring the  

extent of ion suppression induced by the sample matrix. However, because metabolite extracts  

from 1 × 106 cells represent a more diluted matrix compared to urine samples, the drying gas  

temperature had to be lowered in order to reveal differences in the amount of non-volatile  

components in different cell extracts. The authors then applied this MIIS method on comparative  

metabolomics study of two lung cancer cells, CL 1-0 and CL 1-5, with the same cell numbers.  

Normalization based on the MIIS measurement reduced the mean metabolite fold change  

between two cell lines from 2.01 to 1.01, a value that is more reasonable considering the  
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homeostasis of cell biology. Overall, this study demonstrated the validity of using this MIIS 

method for estimation and adjustment of total metabolite concentrations in cellular metabolomics 

studies. Nevertheless, the applicability of this method depends on the FIA-ESI-MS conditions, 

which suggests that optimal experimental parameters have to be evaluated for different cell 

amounts (e.g., 1 × 105 cells) or for different biological samples. In addition, as indicated earlier, 

an expensive MS equipment is needed for ion signal measurement, while other methods such as 

dansylation UV measurement use simpler equipment.  

  

4.3. Normalization of Other Biological Samples 

Compared to urine and cellular samples, the need for sample normalization in other  

biological media is far less explored. While blood and cerebrospinal fluid (CSF) are considered  

homeostatically regulated, there are still a number of sample types in which proper control of the  

solute concentration is absent. For example, the sample volume of sweat can often vary  

depending on the water content, which can be affected by several factors such as ambient  

temperature and relative humidity. There is also large variation in sweat production for different  

individuals [85]. As commented in a recent review on sweat metabolomics, the absence of proper  

normalization methods to account for the sample volume variations presents a major drawback in  

the quantitative analysis of sweat [86]. To address this problem, Appenzeller et al. has proposed  

the use of sodium and potassium concentrations as normalization factors for sweat, which is 

similar to normalization of urine samples to their creatinine content [35]. They found that the  

potassium concentration was highly variable within both the female group (i.e., sweat samples  

collected from all females) and the male group (i.e., sweat samples collected from all males),  

making this species unsuitable for determination of the sweat volume. In contrast, the authors  
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recommended the use of sodium as an internal standard for sweat volume correction because of  

its low inter-individual variability. However, similar to the limitations of creatinine  

normalization, this method is also subject to disease states such as cystic fibrosis [87]. Even in  

healthy individuals, the sodium concentration may vary, for example, with sweat rate and salt  

intake [88]. In addition, the use of a single species for normalization may not be appropriate in 

metabolomics, as discussed previously. Recently, the dansylation LC-UV method has been 

successfully applied to normalize sweat samples for sweat metabolomics [36].  

Exhaled breath condensate (EBC) is a biospecimen that is not commonly used in  

metabolomics, but can be a promising medium for clinical analysis because of its non-invasive  

nature. However, the formation of respiratory droplets is not constantly related with the  

production of water vapor, which can lead to markedly variable dilution of the respiratory solutes  

in EBC [89]. Several efforts have been made to assess the extent of dilution, most of which uses  

the concentration of one or more non-volatile, hydrophilic respiratory solutes as the dilution  

factor. This is based on the assumption that these solutes are diluted to the same factor by the  

condensed water vapor [90]. The most commonly used dilution marker is urea because of its  

even distribution in the body, relatively high stability and low volatility [91]. The use of urea as a  

dilution indicator has been applied in several studies [37,92,93]. Other developed parameters for  

evaluating dilution include total cation, conductivity [90] and protein concentration [94].  

Nevertheless, there is still lack of convincing evidence on whether normalizing EBC data with  

such dilution markers can provide better reproducibility among metabolomic samples, and the  

assumption that the change in solute levels only depends on dilution may not be valid [95].  

Alternatively, data-based normalization methods, such as normalization to MSTUS [38] or to the  

total signal of all compounds detected per sample [39], have been applied in metabolomic  
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analysis of EBC samples. In particular, Peralbo-Molina et al. have compared MSTUS with other  

three proposed normalization methods for EBC, namely the internal standard (IS) response and  

the combination of IS response with the collected EBC volume or the expired EBC volume.  

They concluded that MSTUS is the most suited strategy because it minimizes both intra- 

individual variability and methodological variability [38].    

Fecal samples represent another biological medium in which proper normalization is  

required, because they contain both solid and liquid materials with varying proportions [41].  

Even with the same sample weight or volume, the metabolite concentration can be different  

depending on the liquid content and solid density. One approach to normalize the metabolite  

concentration is by using dry weight, but this procedure is quite time consuming which requires  

overnight drying of the samples and individual sample weighing [40]. Alternatively, a universal  

approach such as post-acquisition statistical methods or pre-acquisition UV absorbance  

measurement can be applied. As an example, Xu et al. has applied the dansylation LC-UV  

normalization method for the profiling of human fecal metabolome and also described a step- 

gradient LC-MS method for sample normalization [41]. They observed a wide distribution of the  

total labeled metabolite concentration, which ranged from 0.60 to 6.37 mM. Even for the fecal  

samples collected from the same individual at three different days, the total concentration of  

labeled metabolites can vary by more than 3-fold. This result highlights the importance of  

sample normalization in quantitative fecal metabolomics. They found that similar normalization  

results could be obtained from LC-UV and step-gradient LC-MS, but the latter was more  

sensitive as expected (i.e., >10-fold improvement). In case that LC-UV is not available, step- 

gradient LC-MS can be used as an alternative means for sample normalization.   
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In addition to the biological samples described above, there are still a number of matrices,  

such as saliva, tears and bronchial lavage fluid, which may require proper normalization in their  

metabolomic applications. Unfortunately, there is very limited discussion on normalization of  

these biofluids. A more universally applicable normalization method should be applied. An  

example of applying the universal dansylation LC-UV method on human saliva samples has  

been demonstrated in the study of metabolome changes associated with mild cognitive  

impairment [42]. This method has also been applied for sample normalization in plant  

metabolomics (Ginseng Roots) [96], milk metabolomic profiling [97] and wine metabolomic  

analysis [98].     

  

5. Implementing Sample Normalization    

As discussed earlier, the main objective of sample normalization is to minimize variation  

caused by differences in sample concentration so that the overall variability within the same  

sample group is lowered, and consequently inter-group differences can be more readily measured.  

Variability among metabolomic samples mainly come from two sources: variations introduced at  

the pre-analytical, analytical and data processing work (technical variability) and variations that  

are inherent in the samples (biological variability). Typically the acceptable technical variability  

(expressed as RSD) should not exceed 20% [99] for metabolite quantification. The biological  

variability can be different depending on the biological samples of interest. For example, for  

cultured cell lines or bacterial cells the biological variability within a group is relatively small  

[100], while for human biofluids such as urine or serum the biological variability can be much  

greater due to differences in genetics, age, body weight, diet and many other factors  [101]. The  

actual observed variability is a combination of technical and biological variability. However, if  
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the sample concentration varies considerably, the observed variability can be “artificially”  

boosted. Thus, sample normalization needs to be performed in a quantitative metabolomics study,  

if variations in sample concentrations among the comparative samples are greater than the  

analytical technical variation (e.g.,  ≥ ±20%).  

Because of the lack of a simple method to measure the total concentration of all the  

metabolites present in a complex sample, as discussed above, a number of methods based on the  

measurement of a selected physical quantity (e.g., osmolality) or chemical quantity (e.g., total  

concentration of dansyl labeled amines and phenols) from a sample have been reported for  

sample normalization with varying degrees of performance. We envisage that research in the  

development of improved or new methods for sample normalization will continue in the  

foreseeable future. As analytical techniques are being advanced to become more precise and  

more accurate (i.e., < ±20%) for quantitative metabolome profiling, rapid and accurate sample  

normalization method will be required in most, if not all, metabolomics studies. Practically a  

measured physical or chemical quantity that can truly reflect the total concentration of all the  

metabolites in a sample will serve well as a normalization factor, with due consideration of  

special circumstances that may lead to inaccuracy (e.g., administration of un-usual diet that  

causes abnormal increases of dietary metabolites in some biofluid samples within a biomarker  

discovery study, engineered metabolite expression that leads to abnormal increase of one or more  

metabolites in a comparative cell sample in a cellular metabolomics study, etc.). Until such a  

measurement can be performed routinely for all types of samples, we would like to recommend  

the reader to select a proper method for sample normalization using Table 2 as a reference. There  

are now several options for performing sample normalization, as reviewed above. The use of a  

proper normalization method for a given project depends on the sample type and the availability  
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of equipment or software for performing either pre-acquisition normalization or post-acquisition  

normalization or both.   

In selecting a sample normalization method, in general, pre-acquisition normalization is  

preferred if such a method is readily available in hand, because it improves the overall  

information recovery, especially when sample concentration variation is large (e.g., urine, sweat,  

cell extracts, etc.). The information loss by post-acquisition methods depends on the percentage  

of metabolites that fail to respond linearly with concentration in a particular sample set and with  

a specific analysis method. As an example, Chen et al. have shown that close to 25% of the total  

detected features display unsatisfactory linearity for urine samples diluted from 1 to 20 fold  

based on their LC-MS platform [23]. Nevertheless, we would like to recommend a post- 

acquisition method to be incorporated into the data pre-processing steps even when a pre- 

acquisition method is used, because it can correct small errors not addressed by pre-acquisition  

sample normalization (e.g., errors introduced during sample processing or detection). For  

example, a quick inspection of the total ion chromatograms generated from LC-MS runs of all  

comparative samples can spot any abnormality such as an outlier or more than expected signal  

variations; applying a post-acquisition normalization may recover the information to a level  

satisfactory for performing quantitative metabolome analysis.        

  

6. Concluding Remarks  

In this review, we have discussed the rationale of performing sample normalization in  

quantitative metabolomics and the factors to be considered when selecting an appropriate  

normalization method for specific applications. We have reviewed a number of normalization  

methods reported mainly for MS-based metabolomics and commented on their performances in  
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terms of the ability to reduce sample amount variations, the applicability to different types of  

biological samples and the convenience to perform. We believe that sample normalization should  

be part of the overall metabolomic profiling workflow for quantitative metabolomics, if the  

sample amount variation is greater than the analytical variation (e.g., ≥ ±20%). We hope this  

review could serve as a reference to assist in the selection of a proper sample normalization  

method for a given metabolomics application.  
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Table 2. List of instrument used, advantages and disadvantages of normalization methods.  

Sample 
Type 

Normalization 
Methods 

Instrument Advantages Disadvantages 

Creatinine Colorimetric assay - Quick and easy to perform 
- Relatively inexpensive 
- Low sample consumption 

- Creatinine excretion may not be 
constant, especially in the case of renal 
impairment 

Osmolality Osmometer - Provides the closest measure to the 
physiology of urinary concentration 

- Requires specific instrument that is not 
commonly used in clinical or research 
labs 

- Result may be affected by sample 
inhomogeneity  

Specific 
gravity 

Refractrometer - Instrument is less expensive and more 
easily accessible 

- Quick and easy to perform 
- Provides a fair estimation of urine 

solute concentration 

- Measurement accuracy can be 
influenced by many factors such as 
presence of heavy molecules, 
temperature and pH 

Dry mass Freeze dryer - Samples are adjusted to the same mass 
concentration before injecting into MS 
to reduce variations of matrix effects 

- Easy to perform 

- Time consuming, at least 48 h required 
- Drying-reconstitution process may 

lead to loss of metabolites 

Urine volume None - No additional equipment/procedure 
required 

- Time consuming, requires 24 h 
collection 

- Collection and storage process is 
inconvenient and cumbersome 

Urine 

MIIS MS - No additional equipment is needed; the 
same LC-MS instrument is used for 
both normalization and metabolomics 
analysis 

- Relatively quick and easy to perform 
 

- Measurement accuracy can be sensitive 
to contaminant buildup in ESI source, 
which requires more frequent source 
cleaning and maintenance 

- requires MS instrument time, which 
may decrease overall throughput. 
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Dansylation 
LC-UV 

LC-UV - High accuracy of measurement 
- Low sample consumption 
- Compatible to dansylation LC-MS 

metabolome profiling 

- Requires LC-UV equipment 
- Accuracy may be reduced if a disease 

could cause large change in total 
concentration of amines and phenols (at 
this stage, there is no known disease 
causing this effect) 

 

Total 
metabolite 

signal 

MS  -      Universally applicable 
- No additional experimental procedure 

required 
 

- Requires MS equipment 
- Cannot adjust LC-MS injection amount 
- May not be valid if different number of 

metabolites with increased and 
decreased levels 

Cell count Hemocytometer - Cell number is the most direct measure 
of the cell amount 

- Performed at time of harvest, which can 
delay subsequent sample preparation 

- Generally have larger variations, 
especially with small cell numbers 

Dry weight Freeze-dryer - Relatively easy to perform - Drying process is time consuming 
- Large errors may be introduced with 

small sample amount  
Total protein Colorimetric assay - High accuracy of measurements 

- Relatively quick to perform  
- A separate experiment is required for 

protein quantification, which consumes 
part of the sample and takes extra time 

Total DNA Spectrophotometer - High accuracy of measurements 
- Uses the same sample as the 

metabolomics study 

- Requires specific reagents and 
apparatus for measuring DNA 

- Relatively time consuming (overnight 
solubilization) 

Cell 
extract 

Housekeeping 
metabolites 

MS - Fast and convenient to perform 
- No additional experimental procedure 

required 

- The utility of the housekeeping 
metabolites has to be validated for each 
cell line 

- Cannot adjust LC-MS injection amount 
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MIIS MS - Same as for urine (above) - Same as for urine (above) 
- May require method optimization for 

different cell numbers or cell lines. 
Dansylation 

LC-UV 
LC-UV - Same as for urine (above) - Requires LC-UV equipment 

Dansylation 
Metabolite 

Assay 

Colorimetric assay - High accuracy of measurement 

- Low sample consumption 

- Compatible to dansylation LC-MS 
metabolome profiling 

- Requires performing liquid-liquid 
extraction which can be relatively time-
consuming 

 

Total 
metabolite 

signal 

MS  -      Same as for urine (above) 
 

- Same as for urine (above) 

Sodium 
concentration 

Capillary zone 
electrophoresis 

- Only requires very low sample volume 
and a short time for analysis 

- Requires specific instrument 
- The assumption of constant sodium 

concentration may not be valid 

Sweat  

Dansylation 
LC-UV 

LC-UV - Same as for urine (above) - Requires LC-UV equipment 

Urea MS or urease - Most widely used dilution indicator for 
EBC 

- No additional experimental procedures 
if use MS measurement 

- MS data is obtained post-acquisition 
- Measurement by urease incubation is 

inconvenient to perform 

Total cation Ion 
chromatography 

- Provided comparable dilution 
estimation to urea 

- Requires specific and expensive 
instruments 

Conductivity Conductivity meter - Less expensive and more convenient to 
perform compared to total cation 
measurement  

- Requires lyophilisation to remove NH4
+ 

Exhaled 
breath 
condensa
te (EBC) 

Protein 
concentration 

Micro BCA protein 
assay 

- Standard assay kit readily available at 
reasonable prices 

- Correlations between protein and 
metabolite dilution/condensation 
remain to be investigated 
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 Total 
metabolite 

signal 

MS  -      Same as for urine (above) - Same as for urine (above) 

Dry weight Heating oven - Relatively easy to perform - Drying process is time consuming 
Dansylation 

LC-UV 
LC-UV - Same as for urine (above) - Requires LC-UV equipment 

Fecal 
samples 

Dansylation 
LC-MS 

Step-gradient LC-
MS 

- High accuracy of measurement 
- Very sensitive 
- Compatible to dansylation LC-MS 

metabolome profiling 

- Requires LC-MS equipment 

Other 
samples 
such as 
plant 
extracts, 
milk, 
wine 

Dansylation 
LC-UV 

LC-UV - Same as for urine (above) - Requires LC-UV equipment 
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Figure captions 

Figure 1. General workflow for quantitative metabolome profiling.  

Figure 2. Typical workflow of sample normalization. Normalization can be performed either 

pre-acquisition or post-acquisition. 

Figure 3. Comparison of MSTUS normalization to other commonly used normalization 

strategies. Non-targeted metabolomic analysis was performed on two groups of 12 

Sprague-Dawley rats, with six males and six females in each group. One group 

received a low dose (non-toxic) and the other group received a high dose (toxic) of a 

compound that induces phospholipidosis in this species. This figure shows the 

resulting PCA score plots of (A) without normalization; (B) normalized to urine 

volume; (C) normalized to osmolality; (D) normalized to creatinine concentration and 

(E) normalized to MSTUS. Open squares: low dose males; open triangles: low dose 

females; solid squares: high dose males; solid triangles: high dose females. 

Normalization to osmolality (C) and MSTUS (E) show the best separation between 

four biological groups and smallest variation within the biological replicates. Adapted  

from reference [14] with permission.   

Figure 4. Box plots showing peak intensity distributions in (A) non-normalized and (B) median 

fold change normalized urine metabolomics data, collected from 20 male (red) and 20 

female (blue) Wistar rats, as well as serially diluted QC urine samples (green). QCD2 

to 8 corresponds to 2 to 8-fold dilution of the QC samples. The box represents 25th to 

75th percentile and the median is shown as a black diamond in the box. The y-axis is 

the log2 ratio of metabolite peak intensities to the median value calculated across the  
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data set. For non-differentially expressed metabolites the log2 ratios should have a  

small spread around zero. In the absence of normalization a large variation in log2  

fold change is observed across different biological samples, which is caused by  

differences in overall sample concentration. Median fold change normalization  

corrects for such concentration variations by adjusting the median peak intensities  

across samples to be approximately equal. As a result, near zero log2 ratios were  

observed for the non-differentially abundant metabolites. Adapted from reference [26]  

with permission.  

Figure 5. Schematic illustration of dansylation LC-UV quantification. (A) The metabolome  

samples first undergo derivatization with dansyl chloride to attach the dansyl group to  

the amine- and phenol-containing metabolites.  (B) The dansyl moiety is a good  

chromophore that “unifies” the absorptivity of labeled metabolites. As a result, UV  

absorption can be measured at the specific absorption wavelength of the dansyl group.  

A step gradient is used to allow co-elution of all labeled metabolites, and the  

integrated peak area is correlated to a fraction of the metabolome that reacts with  

dansyl chloride (amines + phenols). (C) The metabolome sample concentration or  

volume can be adjusted according to LC-UV quantification results in order to inject  

the same amount from all individual samples into LC-MS for metabolomic profiling  

in a conventional LC-MS workflow. For differential chemical isotope labeling LC- 

MS workflow, the LC-UV quantification results can be used to prepare an equal  

amount mixture from a labeled sample and a differential isotope labeled control  

sample, followed by injecting the same amount of mixture into LC-MS for the  

comparative samples.   
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Sample Amount Normalization

Pre-acquisition Normalization Post-acquisition Normalization

Metabolome samples with different 

concentrations or amounts

Metabolome samples with same 

concentration or amount

Volume/concentration 

adjustment

Data acquisition

Metabolome samples with different 

concentrations or amounts

Data acquisition

Sample 1 2 3 4 5

Metabolite 1 1.04 0.61 0.47 1.57 2.27

Metabolite 2 0.24 0.16 0.14 0.46 0.6

Metabolite 3 1.16 0.65 0.63 1.59 2.15

Total intensity

(*105)
5.19 3.03 2.55 7.75 10.9

Adjust signal according 

to acquired data

Sample 1 2 3 4 5

Metabolite 1 1.04 1.05 0.96 1.05 1.08 

Metabolite 2 0.24 0.27 0.28 0.31 0.29 

Metabolite 3 1.16 1.11 1.28 1.06 1.03 

Sample 1 2 3 4 5

Metabolite 1 1.04 1.02 0.99 0.94 1.12

Metabolite 2 0.25 0.25 0.29 0.3 0.31

Metabolite 3 1.14 1.12 1.19 1.21 1.18

Figure 2



Page 52 of 57

Acc
ep

te
d 

M
an

us
cr

ip
t

52 

 

 

 



Page 53 of 57

Acc
ep

te
d 

M
an

us
cr

ip
t

53 

 

 



Page 54 of 57

Acc
ep

te
d 

M
an

us
cr

ip
t

54 

 

 

 



Page 55 of 57

Acc
ep

te
d 

M
an

us
cr

ip
t

55 

 

 
 



Page 56 of 57

Acc
ep

te
d 

M
an

us
cr

ip
t

56 

 

 

 



Page 57 of 57

Acc
ep

te
d 

M
an

us
cr

ip
t

57 

 

 

Highlights  

• Sample-to-sample amount variation could be larger than analytical variation. 

• Sample normalization is a critical step in quantitative metabolomics. 

• Sample normalization should be incorporated into a metabolomic profiling workflow.  

• There is no unified method; but a number of methods have been reported. 

• The performance of sample normalization methods needs to be carefully considered to select a method. 

 


