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Abstract 

Human sweat can be noninvasively collected and used as a media for diagnosis of certain 

diseases as well as for drug detection. However, because of very low concentrations of 

endogenous metabolites present in sweat, metabolomic analysis of sweat with high coverage is 

difficult, making it less widely used for metabolomics research. In this work, a high-performance 

method for profiling the human sweat submetabolome based on chemical isotope labeling (CIL) 

LC-MS is reported. Sweat was collected using a gauze sponge style patch and extracted from the 

gauze by centrifugation and then derivatized using CIL. Differential 
12

C- and 
13

C-dansylation 

labeling was used to target the amine/phenol submetabolome. Because of large variations in the 

total amount of sweat metabolites in individual samples, sample amount normalization was first 

performed using LC-UV after dansylation. The 
12

C-labeled individual sample was then mixed 

with an equal amount of 
13

C-labeled pooled sample. The mixture was subjected to LC-MS 

analysis. Over 2707 unique metabolites were detected across 54 sweat samples from six 

individuals with an average of 2002±165 metabolites detected per sample from a total of 108 

LC-MS runs. Using a dansyl standard library, we were able to identify 83 metabolites with high 

confidence; many of them have never been reported to be present in sweat. Using accurate mass 

search against human metabolome libraries, we putatively identified an additional 2411 

metabolites. Uni- and multivariate analyses of these metabolites showed significant differences 

in the sweat submetabolomes between male and female, as well as between early and late 

exercise. These results demonstrate that the CIL LC-MS method described can be used to profile 

the human sweat submetabolome with high metabolomic coverage and high quantification 

accuracy to reveal metabolic differences in different sweat samples, thereby allowing the use of 

sweat as another human biofluid for comprehensive and quantitative metabolomics research.     
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Introduction 

Sweat is a colourless, hypotonic biofluid produced by both eccrine and aprocrine sweat 

glands in the epidermis. Its main function is the thermoregulation of internal body temperature 

through evaporative cooling in response to heat or physical exercise. The main constituents of 

sweat include water, electrolytes (sodium, potassium, and chloride), urea, pyruvate, lactate, and 

amino acids; but other molecules such as proteins, peptides, drugs, and other xenobiotics can 

also be detected.
1
 It has been shown that the eccrine sweat proteome is significantly different 

than the serum proteome, suggesting that sweat components are not simply a diffused fluid from 

the plasma, but may be representative of surrounding tissues and cellular processes.
2
 Thus, sweat 

can serve as another important biofluid for omics-based biomarker discovery research. Since the 

majority of sweat constituents are small molecules (<1000 Da), it is a prime candidate for 

metabolomics applications.
3
 Currently, human urine and blood, as well as cerebrospinal fluid 

(CSF) and saliva, are more commonly used for metabolomics. Compared to collecting these 

biofluids, sweat sampling is attractive because it is a noninvasive procedure that can be 

conveniently collected on regular intervals or on a continuous basis.
4
 For example, wearable 

sensors for monitoring a few sweat components (glucose, pH, Na and K) have been recently 

reported.
5
 Since there are a total of 1.6 to 4.0 million sweat glands located on the majority of the 

epidermis,
6
 sweat has enormous potential to become the perfect source of biomarkers for 

imaging the body’s surface. 

Sweat is already used as a clinical sample in a test for sweat chloride concentration to aid 

in the diagnosis of cystic fibrosis.
7
 Certain drugs in sweat are detectable by mass spectrometry 

(MS) and sweat drug testing provides an alternative or complementary means of detecting 

substance abuse.
8
 Despite these applications, this biofluid has been overlooked as a biospecimen 
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in most clinical analysis due to low concentration of endogenous metabolites, and lack of 

research relating pathological states to metabolite composition. However, with recent advances 

in the development of sensitive analytical techniques for metabolite detection, metabolomic 

profiling of sweat may provide a means of searching for potential biomarkers of health state 

using sweat samples. Indeed, a few studies of profiling sweat metabolites using NMR,
9, 10

 GC-

MS
11, 12

 and electrospray ionization (ESI)-MS or LC-MS
13-15

 have been reported. However, the 

overall metabolite coverage with current techniques is low (i.e., tens of metabolites detectable).
3
 

In a related work, GC-MS analysis of volatile organic compounds (VOC) collected from human 

skin including sweat
16

 from 200 individuals detected a combined list of 373 peaks.
17

 Aside from 

limited coverage, due to large variations of total metabolite concentrations in sweat, sample 

amount normalization is a major challenge for quantitative metabolomic profiling of individual 

sweat samples. 

We report a sensitive LC-MS workflow for human sweat metabolomics with high 

coverage. Our method is based on the high-performance chemical isotope labeling (CIL) LC-MS 

platform for quantitative and in-depth submetabolome profiling.
18-21

 High-performance CIL uses 

rationally designed labeling reagents to modify the metabolite’s chemical and physical properties 

to such an extent that simultaneous improvement in separation, ionization and quantification can 

be achieved in LC-MS. For example, 
12

C- and 
13

C-dansyl labeling LC-MS can be used for 

relative quantification of the amine/phenol submetabolome with high sensitivity.
18

 This labeling 

technique has been applied to metabolomics studies using serum, CSF,
22

 urine,
23

 saliva,
24

 and 

human feces.
25

 In a recent study comparing the number of metabolites detectable by nano-flow 

LC-MS and micro-flow LC-MS, human urine and sweat droplets were used as testing samples.
26

 

In this report, the entire workflow for human sweat metabolomics is described and the analytical 
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performance of this method is demonstrated in metabolomic profiling of sweat samples collected 

at different time points during exercise. It is shown that a large number of metabolites could be 

readily profiled using CIL LC-MS. Thus sweat can be used as an important biofluid for 

comprehensive and quantitative metabolomics research. 

 

Experimental Section 

 Figure 1 illustrates the overall workflow of the high-performance CIL LC-MS platform 

used in this study. 

Sweat Sample Collection and Extraction. A total of 54 sweat samples were collected 

from both men (n=3) and women (n=3) with ethics approval from the University of Alberta. 

Volunteers were instructed to refrain from consuming alcohol 24 hr prior, and coffee the day of 

sweat collection. Samples were obtained on three separate days from each volunteer. On each 

day, sweat was collected from the proximal forearm for ten min during three separate time 

periods of moderate to intense exercise using a patch method.
27

 To collect the sweat, a gauze 

sponge sweat patch was constructed in house and utilized. The proximal forearm collection area 

was first cleansed with 70% isopropanol and distilled water, followed by the application of a 10-

layer, 5 cm × 5 cm gauze pad (Safe Cross First Aid Ltd); no cleansing was done between time 

intervals. Gauze was covered with a Teflon sheet (13/1000 inch) previously cleansed by 

sonicating in a mixture of organic solvents composed of acetonitrile, methanol, isopropanol and 

water, and secured with medical tape. Commercial plastic wrap (Glad® Cling Wrap) was 

wrapped around the forearm to prevent lifting of the tape. This was found to be an optimal 

method for collecting pure sweat, as the use of the Teflon sheet shortens the time that sweat is 

exposed to the air during exercise, thereby minimizing environmental contamination. For method 
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blank, water spiked gauze was sandwiched between 2 pieces of Teflon and then attached with the 

fixation tape.  

We note that the use of the occlusive patch for a short period of time during exercise does 

not cause skin irritation. This simple and inexpensive "classical" method works for this type of 

application. We could collect droplets of sweat directly; but it is not easy and convenient, as we 

wanted to collect sweat cumulated over a period time (10-20, 20-30 and 30-40 min) to measure 

the averaged metabolite level changes in these three periods. Other methods such as using semi-

permeable patches were not explored in this study. One concern with using semi-permeable 

patches is that any atmospheric chemicals surrounding a patch in a gym or outdoor area might 

contaminate the sweat collected in the patch. However, using semi-permeable patches is likely to 

be a better option for collecting sweat over a long period of time, as it reduces skin irritation. In 

the future, we will study the use of this option for sweat collection for metabolomics.   

Volunteers were asked to lightly jog around an indoor track for 40 min, and sweat was 

collected during 10-20 (T1), 20-30 (T2), and 30-40 (T3) min of exercise. Samples were kept on 

ice until extraction via centrifugation at 14,000 rpm for 10 min. Extracted sweat was stored at -

80ºC until dansylation labeling. A total of 54 sweat samples were collected (6 volunteers × 3 

time intervals × 3 separate days). A diagram of the sample collection is depicted in Supplemental 

Figure S1. 

Dansylation Labeling. Frozen sweat samples were thawed at 4ºC, vortexed to dissolve 

precipitates, then centrifuged at 14000 rpm for 10 min before aliquoting 12.5 µL of sweat for 

labeling. We did not study how sample freezing could affect the sweat metabolome and could 

not find any report of such a study, although sample freezing is not an issue for other 

biospecimens such as urine and serum. Future research of examining the sample storage issue on 
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sweat metabolome is warranted. In this work, the labeling method was adapted from a protocol 

previously described.
8
 Supplemental Note S1 provides the detailed information on dansylation 

labeling. 

LC-UV Sample Normalization. Sample amount was normalized using a protocol 

previously described based on LC-UV measurement of the total concentration of dansyl labeled 

metabolite in a sample.
28

 A Waters ACQUITY UPLC system with photodiode array (PDA) 

detector was used to quantify the amount of labeled metabolites in the sweat samples. Labeled 

sweat was diluted 3-fold, and 4 µL of sample was injected onto a Phenomenex Kinetex C18 

column (50 × 2.1 mm, 1.7 µm particle size, 100 Å pore size) for a fast step-gradient run to elute 

out all labeled metabolites together using a high percentage of organic solvent (see Supplemental 

Note S1 for running conditions used). The total peak areas of the labeled metabolites measured at 

338 nm were used for sample quantification.  

LC-QTOF-MS. Labeled sweat samples were analyzed using a Bruker HD Impact QTOF 

mass spectrometer (Billerica, MA, USA) with electrospray ionization (ESI) linked to an Agilent 

1100 series HPLC system (Palo Alto, CA, USA) with an Agilent eclipse plus C18 column (100 × 

2.1 mm, 1.8 μm particle size). Supplemental Note S1 provides the experimental conditions used. 

Data Processing and Statistical Analysis. After LC-QTOF-MS analysis, entire peak 

lists were exported from Bruker Data Analysis software with a signal to noise threshold of three. 

IsoMS software was used for peak-pair picking, peak-pair filtering, and peak-pair intensity ratio 

calculations.
29

 The program eliminates false-positive peaks such as dimers and common adducts. 

All 108 peak pair lists were aligned to produce a CSV file highlighting peak pairs shared 

between samples, as well as their accurate mass, retention time, and peak pair ratios relative to 

the control. A zero-fill program developed in-house was used to fill in missing values in the CSV 
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file by searching the raw data file for missed peaks.
30

 Peak pairs were reconstructed and their 

chromatographic peak ratios were determined using IsoMS-Quant (m/z tolerance = 5 ppm, 

retention time tolerance = 30 s).
31

 

Multivariate analysis was conducted using SIMCA-P+ (Version 12.0) software. Volcano 

plots were constructed using Microsoft Excel and OriginPro 8.5 (OriginLab). To calculate the 

fold-change between groups (male vs. female and different exercise times), the average peak pair 

ratio of all the injections in one group was calculated, then divided by the average peak pair ratio 

of all the injections in the other group. The p-value was calculated using a student’s t-test. Peak 

pairs with a significant fold-change had a fold change ≥ 1.5, or ≤ 0.67, with p ≤ 0.05. The 

multiple-testing-corrected p-value (q-value) was calculated using R and BioConductor 

(www.bioconductor.org).
32

 

Metabolite Identification. Positive metabolite identification was performed based on 

mass and retention time match to the dansyl standard library containing 273 unique 

amines/phenols using DnsID.
33

 In our previous publication,
33

 we have already shown that the 

combined information of accurate mass and retention time is sufficient for positive metabolite 

identification and there is no need of performing or using MS/MS information. Putative 

metabolite identification was done based on accurate mass match to the metabolites in the human 

metabolome database (HMDB) (8,021 known human endogenous metabolites) and the 

Evidence-based Metabolome Library (EML) (375,809 predicted human metabolites with one 

reaction) using MyCompoundID.
34

 The mass accuracy tolerance window was set at 5 ppm for 

database search. 

 

Results and Discussion 
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Sample Amount Normalization. When comparing individual metabolites present in 

different samples, it is crucial to normalize the total sample amount of these samples before 

performing metabolomic profiling. Electrolyte concentration in sweat has been found to increase 

in the event of dehydration compared to euhydration,
35

 and it is possible that the concentration of 

metabolites may also vary depending on sweat rate and hydration levels. Sample normalization 

has been considered to be a major challenge in clinical sweat analysis.
8
 However, normalizing 

the total amount of labeled metabolites in sweat samples is possible since dansyl labeling allows 

for the quantification of labeled metabolites using LC-UV.
28

  

We applied the dansylation LC-UV method to quantify the sweat metabolites and Figure 

2A shows a representative LC-UV chromatogram. The average concentrations of labeled 

metabolites in the 10-20, 20-30 and 30-40 min sweat were determined to be 1.25±0.40 mM, 

0.60±0.09 mM, and 0.38±0.07 mM, respectively. Thus, there was more than 2-fold increase in 

concentration of labeled metabolites in sweat collected during early exercise (10-20 min) 

compared to late exercise (20-30 and 30-40 min). Greater volumes of sweat were obtained in 

samples collected from later exercise than earlier exercise. Sweat solute concentration was 

reported to be influenced by sweat rate,
36

 which explains why the greater yield of sweat collected 

during late exercise was more dilute than sweat collected during early exercise. There was also 

larger variance in labeled metabolite concentration for the 10-20 min samples, compared to the 

20-30 and 30-40 min samples (see Figure 2B). The larger variance in the 10-20 min sweat could 

be explained by differences in the fatigue of volunteers in early stages of exercise. During 10-20 

min of exercise, some volunteers might experience fatigue more than others, resulting in larger 

amounts of sweating and more dilute sweat. In later stages of exercise, all volunteers were 

experiencing heavy fatigue and were sweating at a relatively more consistent rate, resulting in a 
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plateauing of sweat concentration. The large concentration differences found in sweat samples 

strongly suggest that sample amount normalization is required prior to quantitative metabolomic 

analysis. Note that, compared to a sample, the peak area of the blank is relatively small (i.e., 3% 

- 7%) (see Figures 2A and 2B) and thus during sample normalization the peak area of a blank 

was not subtracted.   

Metabolite Detection. In order to demonstrate the performance of the developed method 

for comparative sweat metabolomics, we analyzed the amine/phenol submetabolome of sweat 

collected from 6 volunteers at three different days with three time points during exercise in each 

day. In total, 108 
12

C-/
13

C-mixtures were analyzed from duplicate 
12

C-labeling experiments of 54 

sweat samples referencing to 
13

C-labeled sweat pool. Amount of labeled metabolites injected 

onto LC-MS can have an effect on the number of metabolites detected in a sample. Therefore, 

injection amount was first optimized by injecting increasing volumes of a sweat sample with a 

known concentration of labeled metabolites that was determined using LC-UV. It was found that 

injecting 20 nmol of labeled metabolites generated the maximum number of peak pairs without 

sample carryover into subsequent injections; the sample amount was determined from the 

concentration of labeled samples measured by LC-UV. Thus, all sweat samples were analyzed 

using LC-MS with 20 nmol injection for each run. Figure 2C shows a representative base-peak 

ion chromatogram of dansyl labeled sweat. 

From the 108 LC-MS runs, a total of 3130 different peak pairs were detected with an 

average of 2002±165 peak pairs per run. In order to differentiate the peak pairs resulting from 

the sweat samples and the background peak pairs resulting from the method, a method blank was 

studied. A new gauze pad of the same style was spiked with a small volume of water, followed 

by extracting and labeling the water using the same protocol as sweat labeling. The same volume 
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of labeled blank sample (30 µL) as the labeled sample was injected onto LC-MS for analysis. A 

total of 423 peak pairs were shared between the sweat samples and the method blank (see 

Supplemental Table S1 for the list). While it is possible that some of the 423 peak pairs from the 

blank may belong to the same compounds as those of sweat metabolites. We conservatively left 

all of them out and only counted the remaining pairs, i.e., 2707 unique pairs, as the sweat 

metabolites. 

We note that the process of sweat collection can introduce background chemicals from 

multiple sources including chemical residuals remaining on the skin after cleaning, the gauze pad 

and extraction solvents. We have conducted a separate investigation of the peak pairs detected 

from a gauze pad without sweat, sweat collected in a gauze pad and a sweat droplet itself. Sweat 

collection was conducted on forehead, instead of forearm, as sweat droplet can be readily 

collected from forehead after exercise. The results are described in Supplemental Note S2, from 

which we conclude that the metabolites detected in sweat samples collected in a gauze pad were 

mainly from sweat (>90%).     

Human Sweat Submetabolome. To identify the 2707 peak pairs unique to sweat, a 

dansyl-library search based on accurate mass and retention time was conducted against 315 

entries from 273 unique dansylated metabolite standards. We were able to identify 83 

metabolites with high confidence (see Supplemental Table S2A). Some of these metabolites such 

as amino acids are the same as those identified in sweat using other techniques.
9-15

  We also 

searched the human metabolites in the HMDB library and the predicted human metabolites with 

one metabolic reaction in the MCID library using accurate masses of the peak pairs found. We 

matched 1025 metabolites to HMDB (Supplemental Table S2B) and 1386 metabolites to MCID 

(Supplemental Table S2C). Thus, out of the 2707 peak pairs detected, we could match a total of 
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2494 metabolites (92%). To our knowledge, this is the largest human sweat submetabolome ever 

reported. Our results indicate that the sweat metabolome is much more diverse than once 

thought, and its constituents may extend past the categories of electrolytes, amino acids, 

peptides, urea, and pyruvate.
1
 

In all LC-MS runs, amino acids generated the strongest peak intensities compared to 

other metabolites (see Figure 2C). All common amino acids except histidine and a large number 

of dipeptides were also identified in sweat using dansyl-library search. Histidine was identified 

putatively using HMDB. Although lactate and urea were reported to have high abundance in 

sweat,
1
 they could not be labeled by dansyl chloride due to their lack of primary or secondary 

amine or phenol group, and thus were not detected in our analysis. Note that the same workflow 

shown in Figure 1 should be applicable to other high-performance CIL experiments targeting 

different chemical-group-based submetabolomes. For example, DmPA has been shown to be 

useful for profiling the carboxyl acid submetabolome with high coverage.
19

 Thus, we envisage 

that using multiple labeling of sweat will increase the metabolomic coverage even further.  

Quantitative Metabolomics. While having high metabolomic coverage is certainly 

important to ensure that a large number of metabolites are examined, being able to quantify their 

changes in comparative samples with high accuracy and precision is also critical, particularly for 

revealing subtle differences. In the CIL LC-MS method, a pooled sample from mixing aliquots 

of individual sweat samples was labeled with 
13

C-dansylation, which served as a global internal 

standard or control for analyzing all the 
12

C-labeled individual samples (see Figure 1). Using the 

pooled sample as a reference mitigated the matrix effect and ion suppression effect on metabolite 

detection,
37

 as a 
12

C-labeled metabolite from a sample and its corresponding 
13

C-labeled 

counterpart from the pool experienced the same labeling, separation, ionization and detection 
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processes with constant efficiencies. Thus, the peak ratio of the 
12

C-/
13

C-labeled metabolite 

shown as a peak pair in MS reflected the relative concentration of the metabolite in the sample 

vs. that in the pool. Since all the individual samples were spiked with the same pooled sample, 

the peak ratio values of a given metabolite found in all the samples provided the measurement of 

concentration changes of the metabolites in these samples.  

Another important issue in quantitative metabolomics is related to the missing data in the 

metabolite-intensity table containing sample/metabolite IDs and their corresponding metabolite 

peak ratios. Missing data can affect the performance of multivariate analysis including Principle 

Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA). In our 

work, we chose a stringent criterion to retain the metabolites for statistical analysis: metabolites 

must have peak ratio values in at least 80% of the samples in a comparative group. With this 

criterion, a total of 1262 peak pairs were used for multivariate analysis in comparing the sweat 

samples collected from males and females, and 1387 peak pairs were used to compare the 3 

exercise intervals. When comparing sweat samples collected between individuals, metabolites 

must be present in 80% of all the injections. These three comparisons are described below to 

illustrate that the CIL LC-MS method is useful for quantitative sweat metabolomics. 

Metabolomic Comparison of Individuals. Multivariate analysis was performed to 

compare time-dependent metabolomic changes in a series of samples collected from six 

individuals; three samples per day for three different days were collected from each individual. 

Figure 3 shows the PLS-DA plot of the metabolomic data set. Overall, higher inter-individual 

variability in the sweat metabolome was observed between subjects, which is consistent with 

previous studies involving sweat.
10

 Sweat collected from individuals cluster together on the plot 

with R
2
X = 0.869, R

2
Y = 0.961 and Q

2
 = 0.931, despite sample collection on 3 separate days 
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without any diet control. The model was validated using a permutations test (see Supplementary 

Figure S2A). This clustering indicates that an individual’s genetics and environment (i.e., 

microbiome) are stronger determinants than diet on the sweat metabolome profile. Although an 

extensive study using more subjects and collecting more samples over a larger time frame is still 

needed to confirm this finding, this finding is not surprising considering that, even in plasma and 

urine collected from individuals with standardized meals, large inter-individual variability of the 

metabolomes has been observed.
38

 

Metabolomic Comparison of Male and Female. There have been a number of studies 

investigating the effects of gender on the urine and plasma metabolome using either human or 

mouse models.
39-43

 Studying the effects of gender, along with age, ethnicity and environment, on 

the human metabolome can assist in our understanding of the normal physiology of healthy 

individuals and help eliminate artifacts when conducting disease biomarker discovery 

investigations. We applied dansylation LC-MS to sweat samples collected from male and female 

individuals in order to determine whether this method is sufficiently sensitive and quantitative to 

detect metabolomic differences between genders. Figure 4A shows the PCA plot, and a clear 

separation between male and female sweat is visible on the second principle component. A 

separation is also observed mainly on the first principle component of the PLS-DA plot shown in 

Figure 4B, with R
2
X = 0.647, R

2
Y = 0.973 and Q

2
 = 0.960. The model was validated using 

permutations test (see Supplemental Figure S2B). 

The same data set was also subjected to univariate analysis to determine the significant 

metabolites that contribute to the separation between male and female sweat. In Figure 4C, a 

volcano plot highlights the significant metabolites with a fold-change of ≥ 1.5 or ≤ 0.67, and a p-

value ≤ 0.05. In total, 161 peak pairs had an increase in concentration and 142 peak pairs had a 
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decrease in concentration in females compared to males. Among the 303 significant peak pairs, 

14 of them were positively identified using the dansyl standard library, and 276 were putatively 

identified using accurate mass search against the HMDB and MCID libraries (see Supplemental 

Table S3A-C for the list). To gauge the false discovery rate, q-values were calculated for 1262 

differentiating metabolites (see Supplemental Table S4). Using a cut-off of p < 0.05, before 

multiple-testing-correction, we expect a total number of 63 false positives with a p < 0.05. There 

should be far less false positives in the volcano plot since we also have the fold-change filter to 

determine the significant metabolites. The corresponding q-value for p = 0.049907 was 

0.012406, meaning that 1.24% of metabolites with p < 0.05 were likely false positives. Thus the 

false discovery rate in this comparison is low.  

Because there is no report of quantitative sweat metabolomics with this high coverage, 

direct comparison of our results to other sweat analyses could not be made. However, some of 

the metabolic changes found in our work are worth noting to indicate that sweat metabolomics is 

a largely untapped research field and our method allows investigating the sweat metabolome for 

biological and biomarker research. For example, previous research has shown an increase in 

hydroxyphenyllactic acid in male serum,
43

 which is consistent with what we observed in male 

sweat. The L-form of this compound is found in higher concentrations in the urine and CSF of 

patients exhibiting phenylketonuria and tyrosinemia, while the D-form is only produced by 

bacteria and is found in patients with abnormal gut microbiota.
44

 To our knowledge, this is the 

first instance of hydroxyphenyllactic acid being positively identified in human sweat, and this 

finding may encourage future work on discovering non-invasive biomarkers in sweat to aid in 

diagnosing these diseases. While some of the metabolites can be readily measured in blood test 

(e.g., for determining phenylketonuria), one could use sweat as an alternative media for 
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measuring these metabolite if the levels of these metabolites need to be monitored over a period 

of time. Multiple sample collections is in favor of sweat, as it is more convenient and less stress 

and risk to collect sweat than blood ,  

Another example is on the observation of a 1.57-fold change for 6-hydroxynicotinic acid 

whose identify was confirmed using the dansyl standard library in female sweat compared to 

male sweat. This compound has been previously identified in rat and human urine after oral 

administration of nicotinic acid.
45,46

 The metabolite is supposedly a downstream metabolite of 

nicotinic acid metabolism in Pseudomonas aeruginosa, and is used to identify p. aeruginosa in 

urinary tract infections.
47

 P. aeruginosa is common bacteria of the natural human microbiome, 

and these results may be a reflection of female microbial flora compared to male. Although it is 

well known that the gut microbiome strongly influences the host’s metabolic phenotype,
48, 49

 to 

our knowledge, no studies have observed a significant gender difference in p. aeruginosa 

abundance. Future research in this direction, including direct analysis of microbes to determine 

the extent of microbe metabolite contribution to the human sweat metabolome, is warranted.  

A third example is on the decreased levels of theophylline found in female sweat 

compared to male. Theophylline whose identify was confirmed using the dansyl standard library 

is a metabolic by-product of caffeine, which accounts for 3.7±1.3% of caffeine demethylation.
50

 

It can also be demethylated by Cyp1A2, an enzyme with higher activity in men than in women.
51

  

The decreased level of theophylline in females may indicate lower levels of enzyme activities in 

females compared to males. It might also be possible that the females in this study consumed less 

caffeinated beverages by chance than the males. A large population-based study of sweat, in 

conjunction with other biospecimens such as blood, should be able to answer these questions. 
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The above results show that sweat metabolome differences between genders can be 

observed using dansylation LC-MS. Future work of using a larger sample size is needed to 

investigate and compare the sweat metabolomes of healthy individuals as baseline information 

for disease biomarker discovery research. 

Metabolomic Comparison of Different Exercise Time. We envisage that quantitative 

sweat metabolomics with high coverage will play an important role in studying the relationship 

between exercise and human health; sweat can be readily collected during exercise. We were 

curious as to whether our method can be used to differentiate sweat collected during early 

exercise and late exercise. We thus compared sweat collected during 10-20 min (T1, early), 20-

30 min (T2, middle), and 30-40 min (T3, late) of exercise and the results are shown in Figure 5. 

The PCA plot (Figure 5A) shows a gradual separation from early, middle and late exercise. The 

PLS-DA plot (Figure 5B) shows a clear separation between the early and late exercise, but the 

separation between the middle and late exercise is not as clear (R
2
X = 0.865, R

2
Y = 0.978, Q

2
 = 

0.701). The model was validated using a permutations test (see Supplemental Figure S2C). 

Univariate analyses were also performed on the same data set. Volcano plots (Figure 6) 

compare the metabolite composition of sweat collected during different periods of exercise. 

Significant metabolites with a fold change of ≥ 1.5 or ≤ 0.67, and p-value ≤ 0.05 are highlighted. 

When comparing the composition of T1 vs. T2, 160 metabolites had an increase in concentration 

and 99 had a decrease in concentration in T2. When comparing the composition of T2 vs. T3, 

only 31 metabolites had a decrease in concentration in T3. When comparing the composition of 

T1 vs. T3, 299 metabolites had an increase in concentration and 411 had a decrease in 

concentration in T3. Of the 717 significant metabolites detected, 99% of them were detected 

when comparing T1 vs. T3. To gauge the false discovery rate, q-values of 1387 metabolites were 
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calculated (see Supplemental Table S5). Using a cut-off of p < 0.05, before multiple-testing-

correction, we expect a total number of 69 false positives with a p < 0.05. Like the male vs. 

female sweat comparison, there should be far less false positives that we call significant after 

applying the fold-change filter. The corresponding q-value for p < 0.047831 was 0.006568, 

meaning that 0.66% of metabolites with p <0.05 were likely false positives. Thus the false 

discovery rate in this comparison is also low. 

Taken together, the results of both multivariate and univariate analyses indicate that 

larger metabolic changes are occurring between early exercise and late exercise, and smaller, 

indistinguishable changes in sweat composition occur once extreme fatigue has already set in. 

These metabolomic changes appear to be well correlated to the shift of aerobic metabolism to 

anaerobic metabolism during exercise.
52

. Because our technique can quantify many metabolite 

changes, it should be possible to design future experiments to study how this aerobic-to-

anaerobic translation affects the overall metabolism in a time resolution that cannot be done 

using blood. For example, we could collect sweat samples frequently (e.g., by minutes) to 

observe the sweat metabolite changes with fast turn-over rates. One potential application of 

frequent sampling of sweat may be to monitor the metabolomic composition changes as a 

function of exercise time as a way of gauging healthy state of an individual. 

Among the 710 significant metabolites separating T1 and T3, we positively identified 25 

metabolites using the dansyl standard library and putatively identified 644 metabolites using 

HMDB and MCID database search (see Supplemental Table S6A-C for the list). The majority of 

the 25 identified metabolites with a significant fold-change after prolonged exercise are amino 

acids and dipeptides, and they seem to show a decrease in concentration during late exercise. Our 

findings are consistent with other studies that report a decrease in overall amino acid 
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concentration in the plasma after prolonged periods of exercise, mainly due to their catabolism to 

produce energy during anaerobic metabolism.
53, 54

  

One of our interesting findings is related to imidazoleacetic acid, a common metabolite in 

the brain that is thought to be derived from the oxidation of histamine. This compound was 

found to have a decrease in concentration in T3 (late exercise) compared to T1 (early exercise). 

This observation may suggest a decrease in histamine metabolism or decrease in histamine 

release in late exercise under heavy fatigue. Imidazoleacetic acid has been shown to have 

neurophysiological, cardiovascular, and behavioral effects. While its mechanism of action and 

receptor site has been disputed, it has been repeatedly shown that introducing this compound into 

animal models causes a dose-dependent reduction in blood pressure.
55

 It is possible that the body 

works to decrease imidazoleacetic acid abundance during late exercise in order to regulate blood 

pressure. Histamine was also detected with a fold-change of 0.50 in T3 compared to T1. In future 

studies, we will compare the sweat metabolome to those of other biofluids directly within the 

same individuals in order to gauge their differences.  

 

Conclusions 

We have developed a high-performance CIL LC-MS method for quantitative human 

sweat metabolome profiling with high coverage. Using dansylation LC-MS targeting the 

amine/phenol submetabolome, a total of 2707 unique metabolites were detected across 54 sweat 

samples from six individuals with an average of 2002±165 metabolites detected per sample from 

108 LC-MS runs. We have detected many metabolites that have never been associated with 

human sweat, indicating that the human sweat metabolome is much more complex than 

previously thought. Because our technique is able to detect many metabolites, it opens the venue 
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for future research in designing biological or clinical experiments, including population-based 

study, instead of a limited number of subjects used in this study, to investigate their significances 

for biological or clinical applications. We conclude that, using CIL LC-MS, sweat can be used as 

another important human biofluid for in-depth and quantitative metabolomics research. Future 

work on improving detection sensitivity and sweat collection method may allow metabolomic 

monitoring of sweat using a volume of sample at a short interval. 
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Figure Captions 

Figure 1. Workflow for sweat metabolomics using a high-performance CIL LC-MS method. 

Figure 2. (A) Overlaid UV chromatograms of labeled sweat samples collected after 10-20, 20-

30 min and 30-40 min exercise and labeled method blank. (B) Average peak areas of 

labeled sweat collected from all volunteers at different times during exercise and 

labeled method blank. Error bars represent standard deviation (N=36 for samples and 

N=3 for blank). (C) LC-MS base-peak chromatogram from a 20 nmol injection of 

dansyl labeled sweat. Amino acids are indicated by their single letter code. 

Figure 3. PLS-DA plot of sweat samples from different individuals. Each colour represents a 

different individual’s sweat. There are 18 data points for each individual (3 samples 

× 3 days × duplicate labeling). R
2
X = 0.869, R

2
Y = 0.961 and Q

2
 = 0.931. 

Figure 4. (A) PCA plot and (B) PLS-DA plot of sweat samples from males and females (R
2
X 

= 0.647, R
2
Y = 0.973 and Q

2
 = 0.960). (C) Volcano plot with highlighted features 

fitting the criteria of 0.67 ≥ fold-change (FC) ≥ 1.5 and p ≤ 0.05.  

Figure 5. (A) PCA plot and (B) PLS-DA plots of sweat samples collected after different 

exercise times (R
2
X = 0.865, R

2
Y = 0.978, Q

2
 = 0.701). 

Figure 6.  Volcano plots of sweat collected after different exercise times: (A) T1 vs. T2, (B) T2 

vs. T3 and (C) T1 vs. T3. The fold change represents the average ratio of the later 

exercise period divided by that of the earlier exercise period. Highlighted features fit 

the criteria of 0.67 ≥ FC ≥ 1.5 and p ≤ 0.05. 
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