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Abstract 

 

The interactions of ultrasound with biological materials are exploited for diagnostic, 

interventional and therapeutic applications in humans and can improve productivity in 

industrial-scale generation of organic molecules such as biofuels, vaccines and 

antibodies. Accordingly, there is great interest in better understanding the biological 

effects of ultrasound. In this paper, we studied the impact of low-intensity pulsed 

ultrasound (LIPUS) on RNA expression and metabolism of S. cerevisiae. Although the 

transcript expression signature of LIPUS-treated cells does not differ significantly from 

that of untreated cells after five days, metabolomic profiling by chemical isotopic 

labeling liquid chromatography mass spectrometry (CIL-LC-MS) suggests that LIPUS 

has an impact on the pathways of pyrimidine, proline, alanine, aspartate, glutamate and 

arginine metabolism. Therefore, LIPUS triggers metabolic effects beyond reprogramming 

of the core pathways of carbon metabolism. Further characterization of metabolism will 

likely be important for elucidation of the biological effects of LIPUS.  

 

Keywords:  Low-intensity pulsed ultrasound, transcriptomics, metabolomics, 

Saccharomyces cerevisiae 
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Introduction 

 

Ultrasound has a frequency greater than 20 kHz (above the normal hearing range).1, 2 By 

inducing the formation and collapse of microscale gas bubbles, ultrasound can generate 

an environment in which macromolecules are subjected to high hydrodynamic shear 

stress and temperature.3, 4 The effects of these physical forces on biological materials and 

cells are highly variable and dependent on the type of cell, the irradiation protocol and 

environmental context. At the tissue level, the ultrasound methods in medical imaging are 

known to cause little overt damage,5 and low-intensity pulsed ultrasound (LIPUS) can in 

fact promote tissue repair by stimulating the proliferation of hematopoietic stem cells as 

well as fibroblasts and osteoblasts.6, 7-10  Tissue metabolism may also be altered by 

ultrasound as a result of microbubble collapse; the latter can induce microstreaming and 

microjets which may change the flow of nutrients to and from cells.11  At the molecular 

level, ultrasound can affect cells by stimulating mass transfer which in turn increases the 

efficiency of cellular enzyme reactions including those involved in expression of proteins 

and other molecules (e.g., lipids in algae).4, 12,13     

 

Because the biological applications of ultrasound extend from medicine to 

biotechnological production in microorganisms, there is intense interest in deeper 

understanding of the cellular responses to ultrasound. Such responses have been assessed 

at the population level (for example cell proliferation), and at the molecular level by 

application of such methods as mRNA expression profiling14, 15 and analysis of protein 

post-translational modification.16 One powerful tool for studying cell physiology, global 

analysis of metabolite abundance, has been little used in work on cellular effects of 

ultrasound. Here, we address this experimental shortfall by characterizing the 

metabolome of a model eukaryote, the budding yeast Saccharomyces cerevisiae, as it 
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converts glucose to the biofuel ethanol. The ultrasound treatment during this fermentation 

was a proprietary LIPUS treatment (frequency 1.5 MHz, duty cycle 20%) that has been 

previously reported to improve ethanol production by two microorganisms during 

fermentation.17,18 The metabolome of control and LIPUS-treated cells was characterized 

by chemical isotopic labeling liquid chromatography mass spectrometry (CIL-LC-MS).19 

Metabolomic profiling was complemented by parallel global transcript profiling using 

RNA-seq. Our work shows that metabolic reprogramming is clearly revealed by CIL-LC-

MS though cells do not exhibit a strong transcriptomic signature having undergone 

LIPUS treatment.  

 

Materials and Methods 

 

In our previous study and the current work, we used Saccharomyces cerevisiae strain 

SSL3 (spent sulfite liquor fermentation strain 3), one of the most stress tolerant strains for 

glucose fermentation.20 This strain was purchased from the American Type Culture 

Collection (ATCC 96581). Single colonies of SSL3 for growth in liquid medium were 

obtained from plates incubated at 30°C for 48 hours on mYPD agar (0.3% yeast extract; 

0.5% proteose peptone; 0.1% glucose; 2% agar). The designation ‘mYPD’ is given to 

highlight the fact that this YPD formulation is nutrient-poor compared to the standard in 

yeast molecular biology (YPD, which is 1% yeast extract; 1% bactopeptone; 2% glucose).  

 

Inoculum preparation: One or two colonies were inoculated into 100 mL of mYPD and 

incubated at 180 rpm in a rotary shaker for 24 hours at 30°C. Cells were harvested by 

centrifugation for 5 minutes at 3000 rpm, washed with 0.9% NaCl, and then resuspended 

in 10 mL of medium with low yeast extract and high glucose (mYD; 0.1% yeast extract, 

15% glucose, 0.5g/L (NH4)2HPO4, 1.38 g/L NaH2PO4, 0.03 g/L MgSO4.7H2O - adjusted 
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to pH 5.5 with 2 M NaOH before sterilization). One mL of this cell concentrate was 

inoculated into 100 mL mYD for the fermentation culture. 

 

The 100 mL fermentations were carried out in 250 mL Erlenmeyer culture flasks at 30°C 

for 5 days in a rotary shaker as above. LIPUS (1.5 MHz, 20% duty cycle) was applied to 

the culture by placing each culture flask in its own water bath chamber equipped with an 

ultrasound transducer. Ultrasound treatments of 5 minutes each were given 12 times/day 

(in short, 5 minute treatments every 2 hours for the 5-day fermentation). This protocol 

was selected based on the previous results for S. cerevisiae.18 Ultrasound was applied at 

80 or 100 mW/cm2; these conditions are referred to as 80 mW/cm2 and 100 mW/cm2 

respectively. The control fermentations (CON) did not receive LIPUS treatment. The 

control and LIPUS-treated flasks were sampled for transcriptomic and metabolomic 

analysis at a single time point, specifically the 5-day end-point of the experiment. 

 

This endpoint was chosen because cell number increased during the first 5 days of 

fermentation and then started to drop off (data not shown). A possible reason for 

declining activity after 5 days is that the exposure to ethanol in the closed bioreactor 

began to exceed the level that is readily tolerated by the strain used.21 

 

Transcript Analysis  

 

RNA was extracted from triplicate yeast cultures under CON, 80 mW/cm2 and 100 

mW/cm2 conditions using a Qiagen RNA plant mini kit (RNeasy Plant Mini Kit, 74904). 

The highly purified total RNA was made into a TrueSeq Paired End 100 bp library and 

sequenced on an Illumina HighSeq 2000 system.  The sequencing data was mapped to the 

Ensemble S. cerevisiae genome 
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(http://uswest.ensembl.org/Saccharomyces_cerevisiae/Info/Index) annotated with genes 

and transcripts using CLC Genomics Workbench 7.0.3. The number of reads per sample 

averaged to just under 10 million, which resulted in a mapping average of 85% of the 

7126 annotated gene transcripts in the S. cerevisiae genome (Table S1 in Supporting 

Information).  

 

Statistical analysis: ANOVA was used to identify expression differences within the entire 

dataset at p<0.05.  This data subset was further analyzed as follows. Principle component 

and cluster analyses were performed following the procedures in the tutorial of RNA-Seq 

analysis 

(http://www.clcbio.com/wp-content/uploads/2012/08/RNA-Seq_analysis_part_I.pdf), as 

well as a series of t-tests comparing all three groups of samples. Fold-differences in the 

original normalized comparisons were used in ReVigo (http://revigo.irb.hr/) to generate 

gene ontology (GO) annotation enrichment profiles.  These profiles were not informative 

because of the low overall effect of LIPUS on end-point RNA expression (see Results). 

 

Metabolomic Profiling 

 

Chemicals and reagents: LC-MS grade solvent (acetonitrile, methanol and water) was 

purchased from Thermo Fisher Scientific Canada. Glass beads (0.5 mm diameter) were 

purchased from Biospec Products. 13C-dansyl chloride was synthesized in our lab using 

the protocol published previously.19 All the other reagents and chemicals were purchased 

from Sigma-Aldrich Canada.  

 

Cell lysis and metabolite extraction
22
: 100 µL of 50% MeOH and 0.5 mL of glass beads 

were added to yeast pellets in a 1.5 mL microcentrifuge tube.  Five-rounds of bead 
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beating (one minute/round) were performed for cell lysis. After lysis, 800 µL of 50% 

MeOH was added for metabolite extraction. Cell debris was removed by centrifugation at 

16000 x g at 4°C for 10 min, and the supernatant was transferred to another 

microcentrifuge tube and dried down in a Speed Vac (Savant SC110A).    The dried 

extract was re-dissolved in LC-MS grade water and stored at -80°C. 

 

Dansylation labeling: 25 µL of the metabolite extract was mixed with 12.5 µL of 

acetonitrile (ACN) and 12.5 µL of sodium carbonate-sodium bicarbonate buffer. The 

solution was then mixed with 25 µL of 18 mg/mL 12C-dansyl chloride in ACN for light 

labeling, or 18 mg/mL 13C-dansyl chloride solution in ACN for heavy labeling. The 

reaction was carried out at 40°C for 1 hr. After 1 hr, the reaction was cooled in an ice-

water bath and 5 µL of 250 mM NaOH was added to quench the excess dansyl chloride. 

The solution was then incubated at 40°C for another 10 min. Finally, 25 µL of 425 mM 

formic acid in 1:1 ACN:H2O (v/v) was added to consume excess NaOH and to acidify the 

solution. 

 

Sample Normalization: A sample normalization step was performed before LC-MS 

analysis.23 The total concentration of labeled metabolites was quantified by LC-UV in 

order to use the same amount of each sample for metabolome comparison. 2 µL of the 

labeled solution was injected onto a Phenomenex Kinetex C18 column (2.1 mm × 5 cm, 

1.7 µm particle size, 100 Å pore size) linked to a Waters ACQUITY UPLC system 

(Waters, Milford, MA) for step-gradient LC-UV. Mobile phase A was 5% (v/v) ACN in 

water with 0.1% (v/v) formic acid added, and mobile phase B was acetonitrile with 0.1% 

(v/v) formic acid added. The step-gradient used for LC-UV was: t=0 min, 100% A; t=1 
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min, 100% A; t=1.1 min, 5% A; t=2.5 min, 5% A; t=3min, 100% A; t=6 min, 100% A. 

The flow rate was 450 µL/min. The UV detector was operated at 338 nm.  

 

LC-MS: The 12C-/13C-mixtures were injected onto a Dionex Ultimate 3000 UHPLC 

system (Thermo Fisher Scientific) linked to a Bruker Maxis Impact Quadrupole Time-of-

flight (Q-TOF) mass spectrometer (Bruker, Billerica, MA). Separations were performed 

on an Agilent reversed phase Eclipse Plus C18 column (2.1 mm × 10 cm, 1.8 µm particle 

size, 95 Å pore size).  Mobile phase A was 5% (v/v) ACN in water with 0.1% (v/v) 

formic acid, and mobile phase B was acetonitrile with 0.1% (v/v) formic acid.  The 

chromatographic conditions were: t = 0 min, 20% B; t = 3.5 min, 35% B; t = 18 min, 65% 

B; t = 21 min, 95% B; t = 26 min, 95%; t=34 min, 95% B. The flow rate was 180 µL/min. 

The mass spectrometer conditions were as follows: capillary voltage, 4500 V; end plate 

offset, 500V; dry temperature, 230°C; spectra rate, 1.0 Hz; nebulizer, 1.0 bar; dry gas, 8 

L/min. All MS spectra were obtained in the positive ion mode.   

 

Data Processing and Analysis: The raw data was exported as a .csv file, which included 

m/z, peak intensity, peak width and retention time. Peak pairs extraction, peak filter and 

peak ratio calculations were conducted using the software tool IsoMS.24 The files were 

aligned by each feature’s retention time and accurate mass. The missing values in 

features were filled in using a Zerofill script.25 Principal component analysis (PCA), 

partial least squares discriminant analysis (PLS-DA), and pathway enrichment analysis 

were all performed using the website-based statistical tool MetaboAnalyst 

(www.metaboanalyst.ca).26 Volcano plots were generated by Origin 2015. Metabolite 

positive identification was done based on retention time and accurate mass match to a 

DnsID library (www.mycompoundid.org).27 Metabolite putative identification was 
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performed based on accurate mass match to the metabolites in the human metabolome 

database (HMDB) (www.hmdb.ca)28 and the evidence-based metabolome library in 

MyCompoundID (MCID) (www.mycompoundid.org)29 with one reaction. The MCID 

library is composed of 8,021 known human endogenous metabolites and 375,809 

predicted metabolites from one metabolic reaction. 

 

Results  

 

This initial exploration of global molecular effects of LIPUS on S. cerevisiae is an end-

point study of steady state RNA and metabolite abundance.   

 

Analysis of Annotated Transcripts 

 

Data obtained by RNA-seq of total RNA were used to compare the expression level of 

annotated transcripts in control and LIPUS-treated cells. ANOVA without a fold-change 

threshold filer revealed that 354 annotated transcripts showed a significant difference in 

expression (reads) between the three groups of samples (Table S2 in Supporting 

Information). Consistent with an effect of LIPUS on transcript abundance, PCA of the log 

transformed expression data separated the 100 mW/cm2 sample set from CON and 80 

mW/cm2 (Figure 1). CON and 80 mW/cm2, on the other hand, were not widely separated. 

While global statistical analysis did not separate both 80 mW/cm2 and 100 mW/cm2 from 

CON, the data for the treatment groups does hint at an effect of LIPUS on RNA 

expression levels. Specifically, considering differences that satisfy the p ≤ 0.05 threshold, 

the 80 mW/cm2 and 100 mW/cm2 groups share 23 genomic features that correspond to 

transcripts that differ in abundance from the CON samples (Table 1).  
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The analyses in Figure 1 and Table S2 in Supporting Information were refined by 

filtering to include only those mRNA expression differences that likely affect protein 

synthesis in the cell, that is, expression differences higher than 2-fold.30,31 When this filter 

is applied to the data, it is evident that neither 80 mW/cm2 nor 100 mW/cm2 differs 

substantially from CON (Table S3 in Supporting Information). That is, only YML039W 

(retrotransposon TYA Gag and TYB Pol genes) differs between 80 mW/cm2 and CON (-

2.6 fold), and only YPT6, RIP1 and uncharacterized ORF YDL071C differ between 100 

mW/cm2 and CON (respectively 2.1, 2 and 3.6 fold).  Furthermore, no mRNA that differs 

in abundance by 2-fold or more between 80 mW/cm2 and CON also differs in expression 

between 100 mW/cm2 and CON, and the gene that differs in expression between CON 

and 80 mW/cm2 is not in the same pathway or functional category as any gene that differs 

between CON and 100 mW/cm2. Since 80 mW/cm2 and 100 mW/cm2 have the same 

effect on ethanol production,18 it follows that the molecular mechanism by which these 

treatments improve biofuel yield is not reflected in end-point mRNA concentration 

differences that could underlie population-wide differences in protein expression level.   

 

Metabolomic Profiling 

 

RNA-seq analysis revealed only a modest effect of LIPUS on transcript abundance. Since 

LIPUS causes increased cellular production of ethanol,18 we turned out attention to the 

possibility that steady state levels of other intracellular metabolites differ between the 

control and the LIPUS-treated cells. We used metabolomics to explore this possibility.  

The analytical method employed was chemical isotopic labeling liquid chromatography 

mass spectrometry (CIL-LC-MS). Isotope labeling was achieved by dansylation, which is 

advantageous because it improves the sensitivity of metabolite detection, and metabolite 

separation by reversed phase chromatography.19 First, each individual sample was subject 
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to 12C-dansylation labeling. The total concentration of dansylation-labeled metabolites in 

each individual sample was then determined by LC-UV. Based on these measurements, 

equal amounts of each individual sample were mixed to generate a pooled sample, which 

was labeled using 13C-dansyl chloride.  After that, each 12C-dansylation-labeled 

individual sample was mixed with an equal amount of the 13C-dansylation-labeled pooled 

sample, and the 12C- /13C-mixture injected onto LC-MS for analysis. Metabolite 

identification was based on retention time and accurate mass match to appropriate 

libraries. The data were analyzed by statistical tools to identify the dysregulated 

metabolites. 

 

In total, 4035 peak pairs or putative metabolites were detected from aligned files, which 

combined the CON, 80 mW/cm2 and 100 mW/cm2 groups. We first searched against the 

DnsID library, which contains 275 standards with accurate mass and retention time, for 

positive metabolite identification. Ninety-three metabolites have a match in the DnsID 

library (Table S4 in Supporting Information). Putative metabolite identification was also 

performed by searching accurate mass against HMDB, and 640 peak pairs were matched 

to metabolites (Table S5 in Supporting Information). We further searched against the 

predicted metabolome library MCID and identified an additional 1694 metabolite 

matches (Table S6 in Supporting Information). Therefore, we identified 2334 metabolites 

out of 4035 peak pairs for a 58% matching rate.  

 

Multivariate PCA was performed to visualize all the metabolite information obtained in 

the profiling experiment (Fig. 2A). In the plot, the 80 mW/cm2 and CON samples overlap, 

while the 100 mW/cm2 samples are separated well on principal component 2 (PC 2) from 

other two. The PCA is an unsupervised data reduction technique, and thus the correlation 
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between predictive variables and target variables is not considered. As a complement to 

PCA, PLS-DA was also performed to examine the metabolome dataset. Figure 2B shows 

that there is only a slight separation between the CON and 80 mW/cm2 samples, but a 

clear separation on component 1 between the 100 mW/cm2 and CON. This indicates that 

LIPUS can affect the steady state abundance of intracellular metabolites in yeast.  

Ethanol production does not differ between 80 mW/cm2 and 100 mW/cm2,18 but 100 

mW/cm2 caused metabolite alterations that were not elicited by the 80 mW/cm2 treatment. 

From these observations, we consider it unlikely that the metabolite abundance 

differences between CON and 100 mW/cm2 are, on their own, reflective of metabolic 

events that lead to higher biofuel production.   

 

We plotted the PCA and PLS-DA of only the CON and 100 mW/cm2 groups to further 

evaluate the influence of LIPUS on metabolite abundance in yeast cells. These two 

groups clearly separate from each other on PC1 in the PCA score plot (Fig 2C). The two 

groups also separate on component 1 in the PLS-DA score plot (Fig. 2D). The model that 

the CON and 100 mW/cm2 groups are distinct was subjected to a cross-validation test.  

R2, which estimates how well the model fits the data, is 0.99; Q2, which describes 

predictive ability of the model, is 0.93.32,33 Together these analyses confirm the 

robustness of the PLS-DA model.  

 

Volcano plots of CON versus 80 mW/cm2 (Fig. 3A) and CON versus 100 mW/cm2 (Fig. 

3B) were also used to visualize the metabolomics data. At the threshold of p=0.05, the 

fold change cut-off value for up-regulated and down-regulated metabolites was 1.20 and 

0.83, respectively. Comparing CON and 100 mW/cm2 there are 434 upregulated 

metabolites and 229 down regulated metabolites (Fig. 3B). The number of dysregulated 
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metabolites is lower when comparing CON and 80 mW/cm2: there are only 87 

upregulated metabolites and 36 downregulated metabolites (Fig. 3A). These results 

further confirm that the 100 mW/cm2 treatment has a more significant effect on yeast 

metabolism than the lower dose 80 mW/cm2 treatment.  

 

Table 2 lists the metabolites that differ significantly in abundance between CON and 100 

mW/cm2, and have been definitively identified. Two metabolites with increased steady 

state abundance in the 100 mW/cm2 treatment group, namely β-alanine and pantothenic 

acid, have a direct precursor-product relationship.34,35,36 Interestingly four other 

dysregulated metabolites – uridine, uracil, N-acetyl-putrescine and ornithine – all 

potentially contribute to the synthesis of β-alanine. Considering this data in the context of 

the organization of yeast metabolic pathways,37 it is plausible that LIPUS affects the 

metabolism of pyrimidine and five amino acids (proline, alanine, aspartate, glutamate and 

arginine) (Fig. 4A). In part this conclusion is consistent with the result of an in silico 

analysis in which metabolites that differ in abundance between the three sample groups 

were input into the Pathway Analysis tool in Metaboanalyst. This tool combines 

enrichment analysis based on metabolite concentrations with pathway topology analysis, 

which takes into account the structure of pathways. In the diagram shown in Figure 4B, 

the y-axis represents the p-value calculated from pathway enrichment analysis, while x-

axis represents the pathway impact values from topological analysis. The deeper red color 

represents a larger p-value, and a larger node radius represents a larger impact value.   

This pathway impact visualization reveals some of the same relationships as manual 

analysis. Overall the metabolomics data are consistent with an effect of LIPUS on 

mechanisms that tie into the pathways of pyrimidine, proline, alanine, aspartate, 

glutamate and arginine metabolism.   
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Discussion 

 

The yield of ethanol from high-glucose cultures of S. cerevisiae strain SSL3 is 

significantly improved by LIPUS.18 Here we explored the possibility that transcriptomic 

and metabolomic profiling will reveal biological mechanisms that contribute to this 

effect.  

 

The current endpoint analysis of transcript abundance suggests that modulation of mRNA 

availability for translation is not an important mechanism of physiological 

reprogramming by LIPUS. This is somewhat surprizing because transcriptional and 

translational regulation make a major contribution to the normal control of glucose and 

ethanol metabolism in yeast.33   It is possible that some effects of LIPUS on transcript 

abundance in cells were not detected because they occurred early during the LIPUS 

treatment and were transient. This scenario is not unreasonable considering that 

transcription can be reprogrammed during glucose depletion from the medium even when 

its total level remains sufficient for robust fermentative metabolism and exponential 

growth.38 Future detailed time course studies in which transcript abundance is monitored 

in parallel with the proliferation state of cells and glucose and ethanol levels in the culture 

will be required to test this hypothesis.  

 

For cells harvested at the completion of the growth phase under fermentation conditions, 

metabolomics was a much more effective tool than transcriptomics for revealing 

physiological responses to LIPUS treatment. That is, while the small number of transcript 

changes revealed by RNA-seq could not be mapped onto a plausible cell response 

pathway, the pattern of metabolite changes under LIPUS suggested that flux through 
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interdependent pathways of metabolism is affected by this treatment (Fig. 4A). Therefore, 

metabolomics analysis is a promising avenue for further characterization of how cells 

react to LIPUS. The time course studies proposed for transcriptomics analysis may serve 

as an important guide for future metabolomics experiments. In particular, if the temporal 

studies reveal a transient effect of LIPUS on the transcriptome, then it would likely be 

profitable to perform a detailed study of metabolomic reprogramming during this time 

interval.  

 

Conclusion 

 

We studied the impact of LIPUS on RNA expression and metabolism of S. cerevisiae. 

Metabolomic profiling by CIL-LC-MS indicated that LIPUS has an impact on the 

pathways of alanine, arginine, aspartate, glutamate, proline, and pyrimidine metabolism, 

though the transcript expression signature of LIPUS treated S. cerevisiae did not differ 

significantly compared to the untreated cells after five days. LIPUS activates metabolic 

effects beyond reprogramming of the core pathways of carbon metabolism.  

 

 

Associated Content – Supporting Information tables 

 

Table S1. Number of reads and percent genes mapped per sample. 

 

Table S2. Pairwise comparison of all conditions by ANOVA.  Statistically significant 

expression differences were evident for 354 genes. 

 

Table S3.  mRNA expression differences filtered by p value.  

 

Table S4. Metabolites identified by searching against DnsID. 
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Table S5. Putative metabolite identification was performed by searching accurate mass 

against HMDB, and 640 peak pairs were matched to metabolites. 

 

Table S6. The predicted metabolome library MCID was searched, and an additional 1694 

metabolite matches were identified. 
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Table 1.  Low magnitude but statistically significant transcript abundance differences between 

control and LIPUS-treated samples (two-tailed T test). 

 

   

CON vs 80 mW/cm2
 CON vs 100 

mW/cm2
 

Systematic 
name 

Gene Brief description Fold 
change 

p value Fold 
change 

p value 

YDL126C CDC48 
AAA ATPase; subunit of polyUb-
selective segregase complex -1.13 0.02 -1.19 1.53E-03 

YDR099W BMH2 14-3-3 protein, minor isoform 1.17 0.05 1.31 0.01 

YER074W RPS24A Ribosomal 40S subunit protein S24A -1.09 0.04 -1.1 5.15E-03 

YGL067W NPY1 
Peroxisomal NADH diphosphatase 
(pyrophosphatase) 1.21 0.05 1.26 0.02 

YIL009C-A EST3 
Component of the telomerase 
holoenzyme -1.3 0.03 -1.4 0.03 

YIR035C NRE1 
Putative cytoplasmic short-chain 
dehydrogenase/reductase 1.37 0.04 1.21 0.03 

YJL075C   ORF, Dubious -1.22 0.05 -1.33 0.05 

YKL053W   ORF, Dubious -1.48 5.14E-03 -1.32 0.02 

YKL187C FAT3 
Required for fatty acid uptake; 
mitochondrion-associated 1.52 0.05 1.75 0.05 

YLL037W   ORF, Dubious -1.36 0.04 -1.56 0.03 

YLR174W IDP2 
Cytosolic NADP-specific isocitrate 
dehydrogenase -1.23 0.02 -1.23 0.03 

YML079W   ORF , Uncharacterized -1.19 0.02 -1.21 0.04 

YMR260C TIF11 Translation initiation factor eIF1A -1.14 0.01 -1.11 0.01 

YNL113W RPC19 RNA polymerase subunit AC19 1.32 0.02 1.43 9.71E-03 

YNL298W CLA4 Cdc42p-activated protein kinase -1.18 0.02 -1.29 8.79E-03 

YNR026C SEC12 
Guanine nucleotide exchange factor 
involved in ER to Golgi transport 1.26 0.05 1.25 0.01 

YNR035C ARC35 Subunit of the ARP2/3 complex -1.19 0.04 -1.2 0.04 

YOL054W PSH1 E3 ubiquitin ligase 1.1 0.05 1.18 0.01 

YOL096C COQ3 Mitochondrial O-methyltransferase -1.14 0.05 -1.24 0.01 

YOR040W GLO4 Mitochondrial glyoxalase II 1.43 5.59E-03 1.59 0.04 

YPL179W PPQ1 PP1 family protein phosphatase 1.34 0.05 1.36 0.05 

YPL274W SAM3 
High-affinity S-adenosylmethionine 
permease -1.12 0.03 -1.25 0.05 

YPR126C   ORF , Dubious 1.49 0.03 1.49 0.03 
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Table 2.  Metabolites that differ significantly between CON and 100 mW/cm2 and have 

been definitively identified. 

 
HMDB No. Name Fold 

change 
p value 

HMDB00300 Uracil 0.75 0.001898 

HMDB00214 Ornithine 0.73 0.007194 

HMDB00279 Saccharopine 1.22 0.049021 

HMDB00670 Homo-L-arginine 1.87 2.15E-06 

HMDB00641 L-Glutamine 1.29 1.03E-05 

HMDB00149 Ethanolamine 1.24 0.000549 

HMDB02064 N-Acetylputrescine 1.30 0.007016 

HMDB00056 Beta-Alanine 1.96 2.01E-06 

HMDB00296 Uridine 1.35 5.35E-05 

HMDB03337 Oxidized glutathione 1.20 0.031509 

HMDB00210 Pantothenic acid 1.48 2.93E-05 

HMDB00296_2 Uridine - H2O 1.43 0.000121 

HMDB00939 S-Adenosylhomocysteine 1.33 0.007566 

HMDB00759 Glycyl-L-Leucine 1.35 0.003507 

HMDB28691 Alanyl-Leucine 1.34 0.004264 

HMDB28848 Glycyl-Phenylalanine 1.48 0.002568 

HMDB28694 Alanyl-Phenylalanine 1.28 0.024969 

HMDB04987 Alpha-Aspartyl-lysine 1.44 0.002311 

HMDB00440 3-Hydroxyphenylacetic acid 1.29 0.008094 

HMDB28853 Glycyl-Tyrosine 1.41 0.000138 
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Figure 1: PCA analysis of control and LIPUS-treated samples by RNA 

expression values.  Sample points are plotted according to PCA of the log 

transformed RNA-seq data that were statistically significant by ANOVA.    
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Figure 2: PCA and PLS-DA analysis of control and LIPUS-treated samples by 

relative metabolite abundance.   (A) PCA and (B) PLS-DA scoring plots of 

control, 80 mW/cm2 and 100 mW/cm2 treated groups. (C) PCA and (D) PLS-

DA scoring plots of control and 100 mW/cm2 treated groups. 
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Figure 3: Volcano plots of metabolite abundance in LIPUS-treated cells 

relative to the control.  (A) 80 mW/cm2 versus the control. (B) 100 mW/cm2 

versus the control. The up- and down-regulated metabolites (1.2-fold threshold, 

p ≤ 0.05) are marked in red and green, respectively.  
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Figure 4：：：：  Metabolic pathway analysis. (A) Pathway relationships of 

dysregulated metabolites suggested by manual mapping of the CON versus 100 

mW/cm2 metabolite data onto the metabolic chart of yeast.  (B) Overview of 

metabolic pathway enrichment analysis result using Pathway Analysis tools in 

Metaboanalyst. 
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