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ABSTRACT: Blood is widely used for discovery metabolomics to
search for disease biomarkers. However, blood sample matrix can
have a profound effect on metabolome analysis, which can impose
an undesirable restriction on the type of blood collection tubes
that can be used for blood metabolomics. We investigated the
effect of blood sample matrix on metabolome analysis using a
high-coverage and quantitative metabolome profiling technique
based on differential chemical isotope labeling (CIL) LC-MS. We
used 12C-/13C-dansylation LC-MS to perform relative quantifica-
tion of the amine/phenol submetabolomes of four types of
samples (i.e., serum, EDTA plasma, heparin plasma, and citrate
plasma) collected from healthy individuals and compare their
metabolomic results. From the analysis of 80 plasma and serum
samples in experimental triplicate, we detected a total of 3651 metabolites with an average of 1818 metabolites per run (n = 240).
The number of metabolites detected and the precision and accuracy of relative quantification were found to be independent of
the sample type. Within each sample type, the metabolome data set could reveal biological variation (e.g., sex separation).
Although the relative concentrations of some individual metabolites might be different in the four types of samples, for sex
separation, all 66 significant metabolites with larger fold-changes (FC ≥ 2 and p < 0.05) found in at least one sample type could
be found in the other types of samples with similar or somewhat reduced, but still significant, fold-changes. Our results indicate
that CIL LC-MS could overcome the sample matrix effect, thereby greatly broadening the scope of blood metabolomics; any
blood samples properly collected in routine clinical settings, including those in biobanks originally used for other purposes, can
potentially be used for discovery metabolomics.

Blood samples are being extensively used in discovery
metabolomics for finding sensitive and specific biomarkers

of healthy and diseased states. To analyze the blood
metabolome, LC-MS is widely used, because of its higher
sensitivity than other techniques such as NMR and GC-MS.1,2

However, different types of blood samples (i.e., serum and
plasma prepared using different anticoagulants) have vastly
different matrix compositions.3 There is currently no consensus
on which sample matrix works best for LC-MS-based
metabolomics. Several studies have shown that experimental
artifacts from the collection tubes (e.g., surfactants and
anticoagulants) can be introduced to the measured metabolome
profiles.4−9 Metabolite detectability can also be significantly
different from one sample matrix to another.4−9 This matrix-
dependence characteristic imposes an undesirable restriction on
the type of samples useable for blood metabolomics. For
example, many biobanks originally established for other
purposes (e.g., for genomics research, longitudinal popula-
tion-based health studies, and clinical trials of therapeu-
tics)10−13 with blood samples collected in tubes not ideal for

current LC-MS-based metabolomics could not be used for
discovery metabolomics. Thus, new techniques capable of
performing quantitative and high-coverage analysis of metab-
olomic changes without the restriction of sample type are
needed to extend blood metabolomics to a wide range of blood
samples.
Recently, chemical isotope labeling (CIL) LC-MS has shown

great promise for quantitative metabolomics with high
metabolic coverage.14−25 In particular, rationally designed
isotope reagents with each targeting a chemical-group-based
submetabolome, including amine,14 carboxylic acid,26 hydrox-
yl27 and carbonyl groups,28 have been developed. These four
chemical groups cover more than 95% of the chemical
structures in the Human Metabolome Database (HMDB),
and thus, the combined results of the four groups can
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potentially reach over 95% of the entire metabolome. In this
work, we present a study of using 12C-/13C-dansylation LC-MS
to profile the amine/phenol submetabolome for investigating
the blood sample matrix effect. The results shown herein
indicate that CIL LC-MS can be used for analyzing any type of
blood samples commonly collected in clinical laboratories with
similar performance and is well-suited for quantitative and high-
coverage blood metabolomics for biomarker discovery research.

■ EXPERIMENTAL SECTION
Figure 1 shows the study design and workflow for investigating
the sample matrix effect on blood metabolomics. The study

protocol was approved by the Medical Ethics Committee of the
first Affiliated Hospital of Zhejiang University, Hangzhou,
China, and informed consents were obtained from all
participants studied. Four types of tubes widely used in clinical
laboratories for preparing plasma and serum samples were
studied. They were BD Vacutainer K2 with 5.4 mg of EDTA,
Vacutainer with 2.7 mL of 0.109 M Sodium Citrate,
VACUETTE Tube LH with 6 mL of Lithium Heparin, and
VACUETTE Z Serum Sep Clot Activator tubes coated with
micronized silica particles which activate clotting. Since the
amount of additives used in each tube is fixed, we did not
investigate the effect of additive amounts on MS detection in
this study. Overnight fasting blood (>12 h) was collected from
20 healthy individuals (10 males and 10 females) with similar
characteristics of ethnicity (Chinese), age, weight, and BMI
(Table S1). Blood was collected into four tubes with three
types of anticoagulants (EDTA, heparin, and citrate) and one
coagulant (Note S1-1). Each tube was processed and analyzed
in experimental triplicate. In addition, blanks (i.e., tubes with
the addition of an equivalent volume of water, instead of blood)
were analyzed to determine the background signals from the
matrices.
To profile the blood metabolomes from the four types of

samples, each sample was labeled using 12C-dansylation after
protein precipitation (Note S1-2).14 Briefly, 30 μL of plasma,
serum, or blank was first mixed with 90 μL of cold methanol,
vortexed, and then allowed to sit for 5 min. The sample was
centrifuged at 18 000g for 15 min at room temperature. The
supernatant was taken to a new 1.5 mL plastic vial and dried
using Speedvac. The dried sample was then dissolved in 30 μL
of H2O and 15 μL of ACN, followed by adding 15 μL of buffer
(sodium carbonate/sodium bicarbonate buffer at 500 mM with
pH 9.4) and 30 μL of 12C- or 13C-dansyl chloride solution in
ACN (20 mg/mL). The solution was mixed and incubated at
40 °C for 45 min. After that, 10 μL of NaOH solution (250
mM) was added and the mixture was incubated for another 10
min at 40 °C to quench the remaining dansyl chloride. In the
end, 50 μL of formic acid (FA) in ACN/H2O (425 mM) was
added to neutralize the solution.
The resultant labeled sample was analyzed by LC-UV (Note

S1-3) to measure the total concentration of labeled metabolites
for sample amount normalization.29 On the basis of the total
concentration, an appropriate volume of an individual
unlabeled sample was taken to mix with an equal mole amount
of other unlabeled samples to generate a pooled sample which
was then labeled by 13C-dansylation. An equal mole amount of
the 12C-labeled individual sample and the 13C-labeled pooled
sample was mixed for LC-TOF-MS analysis (Note S1-4). A
quality control (QC) sample was prepared by mixing an equal
mole amount of the 12C-labeled and 13C-labeled pooled
samples and injected into LC-MS after every 10 sample runs.
We note that, in the dansylation labeling experiment of a
sample, we cannot rule out the possibility of some metabolites
being degraded (e.g., those degradable at pH 9.4). However,
during the construction of a dansyl labeled standard library of
273 unique metabolites,30 we labeled a metabolite standard
one-by-one and did not observe chemical degradation or
unexpected products of metabolites for these 273 standards.
The LC-MS data were processed using IsoMS,31 Zero-fill,32

and IsoMS-Quant33 to generate the metabolite-peak-ratio table
(Note S1-5). The final peak-ratio file containing metabolites
consistently detected in more than 80% of the samples within
the same tube group was exported to SIMCA-P+ 12.0 software

Figure 1. Workflow for investigating the blood matrix effect on
metabolome analysis using differential CIL LC-MS. Blood was
collected by venipuncture using a serum gel tube for processing into
serum and potassium EDTA, lithium heparin, and sodium citrate tubes
for processing into plasma. An aliquot of serum or plasma was taken
for methanol precipitation of proteins, 12C-dansylation labeling of the
supernatant, and LC-UV measurement of the labeled metabolites. On
the basis of LC-UV quantification results of individual 12C-labeled
samples, an equal mole amount of individual samples was taken and
mixed to produce a pooled sample, which was then labeled using 13C-
dansylation. Equal mole amounts of 12C-labeled sample and 13C-
labeled pool were mixed for LC-MS analysis. This workflow was also
used for blood metabolomics where the same type of blood samples
was used for measuring the metabolomic differences among the
comparative individual samples.
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(Umetrics, Umea,̊ Sweden) for multivariate statistical analysis.
Metabolite identification was performed based on mass and
retention time match to the dansyl standard library using
DnsID.30 Putative identification was done on the basis of
accurate mass matches to the metabolites in HMDB (8021
known human endogenous metabolites) and in the Evidence-
based Metabolome Library (EML) (375 809 predicted human
metabolites with one reaction) using MyCompoundID.34 The
mass accuracy tolerance window was set at 0.008 Da for
database search.

■ RESULTS AND DISCUSSION
Serum and Plasma Submetabolomes. We used LC-UV

to measure the total concentration of labeled metabolites for
each processed sample. The average concentration was found
to be almost the same for the four types of samples (Figure S1).
Thus, from the perspective of a total amount of metabolites
recovered, there was no bias toward any one particular sample
type for blood processing.
We then compared the LC-MS results of the 12C-/13C-

labeled plasma and serum samples. Figure 2 shows the ion
chromatograms of EDTA plasma, heparin plasma, citrate
plasma, and serum of the same subject with each 12C-labeled
sample mixed with the 13C-labeled pool. The chromatograms
appear to be very similar, suggesting that the metabolome
profiles of the four samples were similar. This is different from
the reported results obtained using conventional LC-MS.4−9

These studies showed that the chromatograms obtained from
plasma and serum were significantly different and there were
strong matrix effects on metabolite detection (i.e., detecting
different metabolites with different intensities in plasma and
serum). In our work, metabolites were labeled with a common
and relatively large dansyl group, and thus, the chemical and
physical properties of the labeled metabolites are strongly
influenced by the dansyl group. As a result, the properties of
dansylated metabolites are much more similar, compared to the
unlabeled metabolites. Consequently, the ionization efficiencies
and ion suppression effects of the labeled metabolites become
similar. Thus, the detectability of the labeled metabolites has
much less dependence on the sample matrix, resulting in similar
LC-MS detection behavior of the four types of samples as
shown in Figure 2.
It should be noted that, in CIL LC-MS quantitative

metabolomics workflow, we perform relative quantification to
determine the metabolite concentration differences (i.e., fold-
changes) between two or more groups of samples using 13C-
labeled pool as the internal control. Thus, individual isotope
standards, which are often required for absolute quantification
of targeted analytes, are not needed. However, if absolute
quantification of an individual metabolite is required, previous
studies have shown that concentrations of amino acids,
polyphenols, and other analytes using isotope labeled standards
could be determined with high accuracy and precision.14,35,36

CIL LC-MS is also different from external calibration, which is
useful for analyzing a small number of targeted metabolites with
the available standards; CIL LC-MS can be used to measure the
relative concentration changes of all the metabolites in a
submetabolome.
We have examined the matrix effect on the detectability of

individual metabolites. One example is shown in Figure S2A
where the molecular ion regions of the same peak pair obtained
from the four tubes are shown. The absolute signal intensities
and their peak ratios were similar in the four types of samples.

In contrast, Figure S2B shows an example where the absolute
signal intensities were altered in two of the four types of
samples. In this case, the EDTA plasma and the citrate plasma
gave similar intensities, but the serum and the heparin plasma
gave lower intensities. Globally, we plot the distributions of the
absolute intensities of all the peak pairs detected in the four
types of samples collected from a subject (Figure 3A). This plot
provides an overview of the detectability of the submetabo-
lomes in four tubes. It is clear that the distributions are very
similar, indicating that for most of the labeled metabolites, their

Figure 2. LC-MS ion chromatograms of 12C-labeled sample mixed
with 13C-labeled pool prepared from (A) EDTA plasma, (B) heparin
plasma, (C) citrate plasma, and (D) serum of the same individual. The
13C-labeled pool, representing the average plasma/serum metabolome
of all the samples (blood of 20 subjects with each collected in four
tubes), was used as a global control or standard for relative
quantification of 12C-labeled samples.
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absolute intensities do not change much across different sample
types.
The above finding is further supported by examining the

commonality in the metabolites detected from the four tubes.
Figure 3B shows the distribution of the numbers of labeled
metabolites detected in the four tubes. From the combined
results of the 240 samples analyzed, a total of 3651 metabolites
were detected. Among them, 3651 (100%) were detected in
EDTA plasma (1811 ± 196 per run, n = 60), 3601 (98.6%) in
heparin plasma (1845 ± 166 per run, n = 60), 3583 (98.1%) in
citrate plasma (1780 ± 188 per run, n = 60), and 3618 (99.1%)
in serum (1836 ± 163 per run, n = 60). If only the metabolites
commonly detected in >80% of the samples of a given type
were considered (this 80% rule was applied to retain the
metabolites for statistical analysis in this study), there were still
1136, 1146, 1138, and 1163 metabolites detected from EDTA
plasma, heparin plasma, citrate plasma, and serum, respectively,
with a combined list of 1170 metabolites. Figure 3C shows the
number distribution of these more reproducibly detected
metabolites. Among the 1170 metabolites, 97.1%, 97.9%,
97.3%, and 99.4% of them were detectable in EDTA plasma,
heparin plasma, citrate plasma, and serum, respectively. By
comparison, there were only 142, 137, 145, and 143 peak pairs
in the corresponding blanks (Figure 3D) with 88 pairs
commonly detected in all the blanks (Note S2-1 describes
the identification of a few of these background chemicals).
Thus, the background contribution from the tubes to the blood
metabolome was not significant. The results shown in Figure
3B−C indicate that the number of metabolites detected was
almost the same from the four types of blood samples and a
vast majority of them could be commonly detected in these
samples.
For a combined list of 3651 peak pairs detected in all the

samples, we identified 78 metabolites using the dansyl library
(Table S2A), matched 883 peak pairs using accurate mass
search to the HMDB library (Table S2B) and matched 1746
peak pairs to the EML library of predicted metabolites (Table
S2C). Thus, 2707 out of the 3651 peak pairs (74.1%) could be

either positively identified or mass-matched to some metabolite
structures. The 944 unmatched peak pairs are listed in Table
S2D.
Taken together, the above results from LC-UV and LC-MS

analyses indicate that the detection of the amine/phenol
submetabolome was not significantly affected by the sample
type. This is in direct contrast to the conventional nonlabeling
LC-MS approach where metabolite detectability has been
shown to be strongly dependent on the blood sample matrix.
Moreover, the number of metabolites detected in CIL LC-MS
is much higher than conventional LC-MS, due to much
increased ionization efficiency after chemical labeling. The use
of other labeling chemistries targeting the acid, hydroxyl, and
carbonyl submetabolomes should further increase the coverage.

Relative Quantification of the Submetabolomes.
Besides the need of high-coverage metabolite detection,
blood metabolomics requires accurate relative quantification
of individual metabolites in comparative samples. In CIL LC-
MS, a 13C-labeled pool is used as a control or global standard
and a same mole amount of the labeled pool is spiked into all
individual 12C-labeled samples for relative quantification. While
matrix effect can influence the absolute intensity of a detected
peak in MS, the relative peak intensity within a peak pair of a
given metabolite does not change much (see Figure S2 as an
example). This is because the 12C-labeled peak from an
individual sample experienced the same matrix effect as that of
the 13C-labeled peak from the pooled sample. Concerning
potential matrix effect on the labeling efficiency of a metabolite,
the individual samples and the pooled sample have similar
metabolite composition (concentrations of individual metabo-
lites and chemical diversity) and matrix (e.g., for serum sample
analysis, the individual samples are serum and the pooled
sample prepared from mixing individual samples is also serum).
Thus, during the labeling process, an analyte to be labeled is
subjected to a very similar matrix effect, which does not cause
significant variation in labeling efficiency, as we have illustrated
previously.37

At the global submetabolome level, we have examined the
overall experimental reproducibility of our data set. In our
work, we performed triplicate experiments for each sample, and
thus, the relative standard deviation (RSD) of an individual
peak pair commonly detected in all triplicates could be
calculated. In Figure 4, we present the triplicate data of the
four types of samples collected from the same subject where the
experimental variation of each peak pair is shown by the RSD
value. To study the matrix effect on both the absolute
quantification and the relative quantification, we calculated
the RSD of the absolute intensities of the 12C-labeled peaks and
the RSD of the peak pair ratios of an individual metabolite
detected in triplicates. Figure 4A shows a plot of the number of
peak pairs as a function of the RSD values of peak pairs
commonly detected in all four tubes. It is clear that much
higher precision is obtained by using peak ratio measurement,
compared to absolute intensity measurement. Figure 4B−E
shows the same type of plot for each sample type. In all cases,
precision is improved by using the relative quantification
method. These plots also show that the absolute intensity
distribution is almost the same for the four tubes, suggesting
again that there were no overall bias in detectability. Since the
precision differences are small among the four sample types, all
the tubes can be used for metabolomic analysis if peak ratio
measurement is used.

Figure 3. (A) Number of peak pairs at different ranges of absolute MS
signal intensity detected in four types of samples from the same
individual. Venn diagrams of the numbers of peak pairs showing (B)
all the samples, (C) 80% of the samples within each type, and (D) four
blank tubes: #1: EDTA plasma; #2: heparin plasma; #3: citrate plasma;
#4: serum.
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To investigate the experimental variation of peak ratios
determined from triplicate analysis of an individual sample (80
samples from 20 subjects with each blood collected in four
tubes), we calculated the RSD values of the peak pairs detected
in each sample (n = 3) and used the box plot to plot the
distribution of these RSD values. Figure 5A shows the box plots
of RSD values for the QC samples (n = 24) and 80 blood
samples (note that, in the y-axis, sample number is coded as,
e.g., F1A denoting female, subject #1, blood sample collected in
tube A or EDTA plasma). The QC data have low RSDs with a
median of 7% and an interquartile range (IQR) from 4% (first
quartile) to 12% (third quartile). In comparison, the average of
the medians for the 80 samples is 15% with the average first
quartile value of 8% and the average third quartile value of 24%.
Thus, the RSDs of triplicate analysis of the real samples are
almost doubled, compared to the QC result. This is expected as
the experimental triplicates in a sample account for the
accumulated variation from the entire experimental workflow,
while injection replicate runs in QC only account for the
instrumental variation in data collection. Figure 5A shows that
the RSD median and IQR values from all the 80 samples are
similar, indicating that similar experimental variations were
found in analyzing these samples.
For the samples collected from different subjects, the relative

quantification results of the peak pairs detected should reflect
biological variations as well as experimental variations. To
reveal the true biological variations, experimental variations
from an analytical method must be smaller than the biological
variations. As indicated earlier, in our work, four different tubes
were used to collect and process blood samples of 20
individuals with each sample analyzed in experimental triplicate.
We calculated the RSD of the same peak pair found in each
experimental replicate of 20 blood samples collected in one of

the four tubes. Figure 5B shows the box plots of the RSDs from
12 data sets of triplicate analysis of four types of 20-subject
samples (in y-axis, each data set is coded as, e.g., E1-A denoting
experimental replicate #1, 20 blood samples collected in tube A
or EDTA plasma). For these 12 data sets, the average of the
median RSD values is 43% with the average first quartile value
of 29% and the average third quartile value of 57%. If the
experimental triplicate data from each tube are combined, four
data sets from the four tubes are generated and each box plot of
the RSDs is shown in Figure 5B (in y-axis, (E123)-A, for
example, denotes the combined triplicate analysis from tube A
or EDTA plasma). For these 4 data sets, the average of the
median RSD values is 36% with the average first quartile value
of 16% and the average third quartile value of 50%. Figure 5B
clearly shows that the RSD values of peak ratios of individual

Figure 4. Number of peak pairs as a function of RSD values of peak
ratios or absolute intensity (n = 3) of individual pairs commonly
detected in (A) all four types of samples of one individual, (B) EDTA
plasma, (C) heparin plasma, (D) citrate plasma, and (E) serum.

Figure 5. (A) Box plots of RSD values of peak ratios of individual pairs
commonly detected in experimental triplicates of each sample coded as
xyz where x = F for female or M for male; y = 1 to 10 for subject #1 to
subject #10; z = A for EDTA plasma, B for heparin plasma, C for
citrate plasma, and D for serum (e.g., F1A refers to the sample from
female, subject #1, EDTA plasma). QC is the quality control sample.
(B) Box plots of RSD values of peak ratios of individual pairs
commonly detected in one or all replicate analysis of 20 subjects with
blood samples collected in one type of tube (the y-axis label, Ex-y,
where x = 1, 2, 3, or 123 and y = A−D, refers to the RSD data from
replicates #1, #2, #3, or all triplicates in tubes A, B, C, or D). The RSD
box plot of QC measures injection variations in LC-MS (n = 24), the
box plot of individual sample measures the experimental variations (n
= 3), and the box plot of 20-person-samples measures the biological
and experimental variations (n = 20 for one replicate and n = 60 for
triplicates).
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metabolites for 20 subjects are much greater than those of
experimental triplicates, indicating that the biological variations
are much greater than the experimental variations. Thus, the
dansylation LC-MS method is sufficiently accurate and precise
to afford the detection of biological variations among the 20
subjects. In the following section, we explore the use of the
metabolomic data to reveal the biological variations, i.e., sex
separation, in a small, but relatively homogeneous, sample set
with a main objective of determining whether the common
significant metabolites are found in four types of samples.
Statistical Analysis of Different Tubes and Sex

Separation. Figure 6A shows the PCA plot of the amine/

phenol submetabolome data set obtained from the blood
samples collected in four tubes as well as the QC samples. The
QC data cluster together tightly. The four types of samples are
separated from each other, which can be more clearly seen in
the OPLS-DA plot shown in Figure 6B. These results indicate
that there are some differences in the measured metabolomes
of the four samples. In our samples of 10 males and 10 females
with similar ages, BMIs, and ethnicities, an obvious group
separation is based on sex. Figure 6C shows the PCA plot of
the same data set as that used in Figure 6A but color-coded
differently into female-plasma, male-plasma, female-serum, and
male-serum. Figure 6D shows the corresponding OPLS-DA
plot. The sex separation can already be seen in the PCA plot
and becomes very clear in the OPLS-DA plot. However, as
Figure 6C shows, tube type can influence the separation.
Therefore, it is important to use the same type of blood
collection tube for revealing biological variations. For
comparison, we generated the PCA and OPLS-DA plots of
the same data set using absolute intensities of 12C-labeled
metabolites (see Figure 7), instead of using the peak ratios of

12C-labeled metabolites vs 13C-labeled pool (Figure 6). Figures
6 and 7 show that, using the ratio values, within a group the
data points are clustered more tightly together and between
groups the point separation is much clearer. The higher
performance can be attributed to much improved precision and
accuracy for relative quantification using peak ratios (see, for
example, Figure 4), compared to using absolute intensities. The
question is, even with the use of ratio values for relative
quantification, whether the use of different tubes will lead to the
discovery of the same set of significant metabolites.
To address this question, we performed a binary comparison

of the metabolomes of males and females using the same type
of samples with the resultant PCA and OPLS-DA plots shown
in Figure S3. Even in the PCA plots, a clear separation between
males and females is observed. To determine the metabolites
that contribute to separation of the two groups, we defined a
significant metabolite as the one found to be significant in both
multivariate analysis using OPLS-DA and univariate analysis
using the volcano plot. On the basis of OPLS-DA analyses, the
number of significant metabolites with a VIP score of ≥1.5 was
found to be 133, 134, 130, and 127 from EDTA plasma,
heparin plasma, citrate plasma, and serum, respectively (see
Table S3 for the lists). In the volcano plots of sex separation in
four types of samples, two levels of fold-change (FC) threshold
(≥1.5 or 2) were plotted (Figure S4). The numbers of
significant metabolites were 170, 222, 196, and 217 using FC ≥
1.5 with p < 0.05 and 46, 72, 60, and 69 using FC ≥ 2 with p <
0.05 (see Table S4 for the lists). To avoid overfitting in
multiple testing, the false discovery rate (q-value) calculated by
the Storey and Tibshirani method was found to be 3.54%,
3.10%, 3.14%, and 3.28%, respectively, with p < 0.05. From the
volcano plot (FC ≥ 1.5) and its corresponding OPLS-DA
analysis (VIP score ≥1.5), we determined the number of
common significant metabolites to be 91, 101, 89, and 92 for
EDTA plasma, heparin plasma, citrate plasma, and serum,
respectively (Table S5).

Figure 6. (A) PCA plot of the QC samples and the 80 samples from
20 subjects with blood collected in four types of tubes and (B) OPLS-
DA plot of the 80 samples color-coded with A for EDTA plasma, B for
heparin plasma, C for citrate plasma, and D for serum. (C) PCA plot
of the QC and 80 samples and (D) OPLS-DA plot of the 80 samples
color-coded according to sex and serum or plasma with F = female and
M = male. The binary metabolomic comparison of females vs males
for each same type is shown in Figure S3 (PCA and OPLS-DA plots)
and Figure S4 (volcano plots).

Figure 7. (A, C) PCA plots and (B, D) OPLS-DA plots of the same
data set as those in Figure 6, but using the absolute intensity values of
12C-labeled metabolites, instead of the peak ratio values of 12C-labeled
metabolites vs 13C-labeled pool.
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Figure S5 shows the Venn diagrams for comparing the
numbers of significant metabolites found from four types of
samples. At FC ≥ 1.5, there are 26 significant metabolites
commonly found from the samples collected in four different
tubes. If we only compare the three plasma samples, there are
37 common significant metabolites found with FC ≥ 1.5. At FC
≥ 2, there are 20 significant metabolites commonly found in
four tubes. If we only compare the three plasma samples, there
are 21 common significant metabolites found with FC ≥ 2.
For clinical application of a true biomarker, the greater the

fold-change between two groups of samples, the better and
easier using the biomarker to separate the two groups. Thus, if
we only focus on the metabolites with FC ≥ 2, according to
Figure S5B, we have a total of 66 metabolites with FC ≥ 2
found in the data set produced from at least one tube. All 66
significant metabolites can be found in any tube with similar or
reduced, but still statistically significant, fold-changes (see Note
S2-2 for fold-change comparison). These results suggest that,
for discovery metabolomics to find the clinically useful
biomarkers with relatively large fold changes from one group
to another, all the sample types could potentially be used. The
box plots of some significant metabolites for sex separation and
their identities are shown in Notes S2-3 and S2-4.

■ CONCLUSIONS
We have shown that using differential CIL LC-MS, blood
samples commonly collected and processed in clinical settings
(i.e., serum, EDTA plasma, heparin plasma, and citrate plasma),
including those in biobanks originally collected for other
research purposes, are suitable for blood metabolomics. Among
the four types of samples, there is no significant difference in
metabolite detectability and relative quantification precision.
Although the use of the same type of samples is preferred to
reveal biological variations among comparative groups, similar
significant metabolites for separating biological variations (e.g.,
sex separation) can be found in metabolomic comparisons of
four types of samples. It is shown that, in all samples, 12C-/13C-
dansylation LC-MS targeting the amine/phenol submetabo-
lome allows the profiling of thousands of metabolites. This
coverage is expected to increase when other labeling
chemistries targeting the acid, hydroxyl, and carbonyl
submetabolomes are applied to the blood sample.
It should be noted that the experimental design and

workflow used in this study should be applicable to investigate
and compare other types of blood collection tubes specially
designed for metabolomics research. For example, various
protease inhibitors can be added to blood collection tubes to
prevent metabolism during blood collection and storage.3,38 In
future work, we will compare the performance of conventional
blood collection tubes and specially designed tubes for
quantitative metabolomics, which would benefit our under-
standing of how some metabolites might change during sample
collection and storage. If a biomarker found for a particular
disease is among these readily changeable metabolites, we
might avoid the use of this biomarker in a routine clinical
laboratory, unless a special type of collection tube is used for
blood collection.
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