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ABSTRACT: Chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS) is a powerful technique for
in-depth metabolome analysis with high quantification accuracy. Unlike conventional LC-MS, it analyzes chemical-group-based
submetabolomes and uses the combined results to represent the whole metabolome. Due to analysis time and cost constraint,
not all submetabolomes can be profiled and thus knowledge of chemical group classification is important in guiding
submetabolome selection. Herein we report a study of determining the distribution of functional groups of compounds in a
database and then examine how well we can experimentally analyze the major chemical groups in two representative samples
(i.e., human plasma and yeast). We developed a computer algorithm to classify chemical structures according to their functional
groups. After removing lipids which are targeted molecules in lipidomic analysis, inorganic species and other molecules that are
unique to drug, food, plant, and environmental origins, five groups (i.e., amine, phenol, hydroxyl, carboxyl, and carbonyl) are
found to be the dominant classes. In the databases of MCID (2683 filtered metabolites), HMDB (5506), KEGG (11598),
YMDB (1107), and ECMDB (1462), 94.7%, 85.7%, 86.4%, 85.7%, and 95.8% of the filtered metabolites belong to one or more
of the five groups, respectively. These groups can be analyzed in four-channel CIL LC-MS where hydroxyls (H), amines and
phenols (A), carboxyls (C), and carbonyls or ketones/aldehydes (K) are separately profiled as individual channels using dansyl
and DmPA labeling reagents. A total of 7431 peak pairs were detected with 6109 unique-mass pairs from plasma, while 5629
pairs with 4955 unique-mass pairs were detected in yeast. Compared to group distributions of database compounds, hydroxyl-
containing metabolites were severely underdetected, which might indicate that the current method is less than optimal for
analyzing this group of metabolites. As a result, the overall experimental coverage is likely significantly lower than the database-
derived coverage. In short, this study has shown that high metabolome coverage is theoretically attainable by analyzing only the
H, A, C, and K submetabolomes and the group classification information should be helpful in guiding future analytical method
development and choices of submetabolomes to be analyzed.

Because of great diversity of chemical and physical
properties of metabolites present in a complex metab-

olome sample, the conventional liquid chromatography mass
spectrometry (LC-MS) approach of metabolome analysis relies
on the use of multiple LC and MS conditions to increase the
number of metabolites detectable or the metabolome coverage.
For example, the combination of a reversed-phase (RP) LC
column for separation of relatively hydrophobic metabolites
and a hydrophilic interaction liquid chromatography (HILIC)
column for separation of relatively hydrophilic metabolites,
along with positive and negative ion MS detection, allows the
detection of different types of metabolites.1 This approach has
the advantage of using a simple workflow with readily available

instrumentation and software for metabolite detection and data
analysis and thus can be easily implemented. However, this
approach has the shortcomings of limited metabolome
coverage due to low detectability of many metabolites and
limited quantification accuracy due to the lack of suitable
internal standards for a vast majority of metabolites. Chemical
isotope labeling (CIL) LC-MS offers a means of overcoming
these limitations.2
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CIL LC-MS metabolome analysis is a divide-and-conquer
approach where the metabolites are divided into different
chemical groups (e.g., amines, acids, etc.), instead of dividing
them according to physical properties such as hydrophobicity
and ionic property.3,4 Each group of metabolites are chemically
labeled with a suitable reagent, followed by LC-MS analysis.
Many reagents have been developed for both targeted and
untargeted metabolome analysis.5−10 With rational design of
chemical structures of the labeling reagents, concomitant
improvement in both metabolite separation and ionization can
be achieved, resulting in significant enhancement in metabolite
detectability and hence much higher metabolome coverage.3

Using differential isotope labeling (e.g., 12C-reagent labeled
individual samples spiked with a 13C-reagent labeled reference
or pooled sample, followed by LC-MS analysis of the resultant
mixtures), accurate relative quantification of all labeled
metabolites in comparative samples can be performed.11

The presumed disadvantage of CIL LC-MS is the require-
ment of chemical derivatization that may add a complication in
sample processing. However, sample processing for metab-
olome analysis often involves multiple steps1,2 and thus a
robust chemical reaction (e.g., by merely adding a reagent to a
sample) may be seamlessly incorporated into the overall
workflow, just as it is done for protein precipitation (e.g., by
adding a solvent to precipitate proteins and then removing
them), sample normalization (e.g., by creatinine measurement
for urine samples), cell lysis (e.g., by adding a lysis reagent),
metabolite extraction (e.g., by adding a solvent for liquid−
liquid extraction), etc. Thus, performing chemical labeling, if
properly done, should not inconvenience the sample handling
process. The benefits of improving metabolite detectability and
quantification accuracy significantly outweigh the addition of
an extra labeling step. However, a more fundamental question
is actually related to the number of labeling reactions we need
to do for a given sample in order to cover the whole chemical
space of the metabolome. Addressing this question will allow
us to understand the chemical group diversity of a
metabolome, prioritize the development efforts on labeling
chemistries to target certain groups of metabolites, and
examine the deficiency of current labeling methods to guide
future method optimization or new labeling method develop-
ment.
In this study, we report our investigation of chemical group

diversity of compound entries in some commonly used

metabolome databases. We developed and applied a high-
performance four-channel chemical labeling approach, based
on dansylation for analyzing amines and phenols,3 base-
activated dansylation for hydroxyls,12 DmPA bromide labeling
for carboxylic acids,13 and dansylhydrazine (DnsHz) labeling
for carbonyl metabolites,4 for the analysis of human plasma as
well as yeast cells in order to examine the current coverage of
these different groups of metabolites in representative complex
metabolome samples. By comparing the distribution of
chemical groups of database compounds with those detected
in four-channel CIL LC-MS, we discussed some limitations of
the current methods that we hope will stimulate future
research activities to meet the ultimate goal of using CIL LC-
MS for whole metabolome profiling.

■ EXPERIMENTAL SECTION

Chemical Group Classification. A Java-based program
was developed to classify the compounds in a database
according to their chemical groups. The workflow of
metabolite classification contains five steps. First, we down-
loaded the five selected metabolome databases: MyCompoun-
dID (MCID),14 HMDB,15 KEGG,16 YMDB,17 and ECMDB.18

MCID is an evidence-based database, including the metabo-
lites detected from human sources and the predicted
compounds generated from these human metabolites after
subjecting them to one or two common metabolic reactions
(MCID-1R as the one-reaction library and MCID-2R as the
two-reaction library). In this work, we used MCID zero-
reaction library for group classification, as the structures of all
entries are known. HMDB collects detailed information about
small molecules such as chemical property data, and clinical
and biochemical data with the initial focus on human
metabolome, but has expanded to include compounds that
may be associated with human (e.g., food, drugs, and chemicals
of environmental sources) as well as some predicted
metabolites. KEGG database includes small molecules along
with their biological processing information such as reactions,
pathways, and related enzymes as well as biological
connectivity among the compounds. YMDB and ECMDB
focus on the metabolites and pathway information on two
widely used model organisms, Saccharomyces cerevisiae (yeast)
and Escherichia coli (E. coli), respectively.
The second step was to extract compound information,

including compound names and chemical structures, database

Figure 1. Targeted functional groups for each reaction or class and SMARTS substructure patterns for determining chemical groups.

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.9b03431
Anal. Chem. 2019, 91, 12108−12115

12109

http://dx.doi.org/10.1021/acs.analchem.9b03431


ID and other information such as source of compound (e.g.,
drug and food) and actual or predicted compound. We then
built the chemical substructure patterns of functional groups
including different patterns for aliphatic and aromatic atoms in
molecules (see Figure 1 for the list). Note that thiols are
grouped into hydroxyls, as they can be labeled using similar
chemical labeling reaction condition. To accurately determine
the functional groups (e.g., amines vs amides), the SMARTS
(SMiles ARbitrary Target Specification) program (www.
daylight.com/dayhtml/doc/theory/theory.smarts) was used
to construct the exact substructure patterns (see Figure 1).
The next step was to filter out the unconventional

metabolites which we defined as lipids (particularly long-
chain lipids), inorganic species, and other molecules that are
unique to drug, food, plant, and environmental origins.
Although lipids can also be considered as metabolites, they
can be extracted and analyzed using methods that are different
from CIL methods. Thus, in this study, we excluded the lipids.
HMDB contains superclass information such as those denoted
as lipids and lipid-like compounds. We used the superclass
information to remove lipid and lipid-like compounds.
Considering that some lipids were not removed using the
superclass information, compounds containing equal to or
more than eight-carbon chains with no class information were
also filtered out as lipids. Then class information was used to
remove flavonoid-, coumarin-, and lignan-related plant
compounds. Compounds not containing any carbon were
filtered out as inorganic compounds. In addition, we removed
drugs and environmental compounds. For KEGG, any
compounds without SMILES structure information were
removed. Generic compounds representing homologous series
were filtered out according to the “Comment” entry. Inorganic
compounds were removed. Because KEGG also contains lipids,
phytochemical compounds, and others, BRITE, manually
generated functional hierarchies16 (Supporting Information
Table S1), was used to filter out the unconventional
compounds. Compounds meeting the three following criteria
were kept: (1) compounds containing any information on
reaction or pathway or module, (2) compounds belonging to
08001, and (3) compounds not containing BRITE informa-
tion.
The final step of the program was to determine the

functional group(s) in a compound structure by matching it to
different group substructure patterns. We wrote a Java-based
program, SubstrcMatch, which uses chemical structure files (in
SMILES format) and substructure patterns as input and then
generates a .txt file to indicate whether a compound contains
the targeted functional group. The group classification results
from different databases were used for metabolomic coverage
analyses.
Four-Channel Labeling. The general workflow for

metabolome analysis using four-channel CIL LC-MS is
shown in Supporting Information Figure S1. It includes the
following steps: (1) sample pretreatment and metabolite
extraction, (2) generation of a pooled sample by mixing
aliquots of all individual samples, (3) dividing a sample into
four aliquots, (4) applying four isotope labeling chemistries
targeting different submetabolomes, (5) LC-UV quantification
of dansyl-labeled metabolites for pre-data-acquisition normal-
ization,19 (6) mixing of equal moles of 12C-labeled samples and
13C-labeled pooled sample, (7) high-resolution RPLC-MS
analysis of 12C-/13C-mixtures, (8) data processing including
peak pair picking and peak ratio measurement,11,20,21 and (9)

metabolite identification based on the use of labeled standard
library for positive identification22 and the use of other
compound libraries for putative identification.12,23

In this work, to demonstrate the performance of the
combined analyses of the four submetabolomes, human plasma
and yeast samples were labeled using the four chemistries in
experimental triplicates. In this case, a sample was divided into
two aliquots. One was labeled with 12C-reagent and the other
was labeled with 13C-reagent, followed by mixing and LC-MS
analysis. Supporting Information Note N1 provides detailed
information on sample preparation and labeling.

LC-MS Analysis. The 12C-/13C-labeled mixtures from
individual channels were analyzed using a Bruker Compact
quadrupole time-of-flight (QTOF) mass spectrometer (Bruker,
Billerica, MA) linked to an UltiMate 3000 UHPLC (Thermo
Scientific, MA). Supporting Information Note N1 shows the
LC-MS conditions used for the analysis. The injection volume
for each channel was determined by injection amount
optimization experiments (Supporting Information Figure S2)

Data Processing and Metabolite Identification. The
resulting LC-MS data were processed using a set of in-house
developed software (Supporting Information Note N1).
Metabolite identification was carried out at three different
levels of confidence, or three tiers, using IsoMS Pro software
and database (Nova Medical Testing Inc., Edmonton,
Canada). Positive identification as the first tier was based on
accurate mass and retention time (RT) search against the
labeled standard library currently composed of 1060 unique
human endogenous metabolites, including 711 amines/
phenols, 187 carboxyls, 85 hydroxyls, and 77 carbonyls. The
second tier identification was based on searching against the
Linked Identity (LI) Library containing metabolic-pathway-
related metabolites (2500 entries extracted from the KEGG
database) with accurate mass and predicted RT information.
These second tier matches were considered to be high-
confidence putative identification. For the third tier, accurate
masses of peak pairs were searched against compound entries
in metabolome databases, resulting in putative matches; 5506
entries in HMDB were searched for the plasma samples and
1123 entries in YMDB were searched for the yeast cell samples.
The remaining unmatched peak pairs were mass-searched
against the predicted metabolome libraries (i.e., MCID one-
and two-reaction libraries).

■ RESULTS AND DISCUSSION
Group Classification of Database Entries. We selected

some of the commonly used databases for chemical group
classification, including MCID, HMDB, KEGG, YMDB, and
ECMDB. We applied the group classification program to
examine the structures of database compounds and then
classify them into different chemical groups. We were
particularly interested in the hydroxyl, amine, phenol, carboxyl,
and carbonyl groups, as we have already developed the robust
labeling methods for labeling these groups. These five groups
are covered in four channels of submetabolome profiling:
hydroxyl (H), amine/phenol (A), carboxylic acid (C), and
ketone/aldehyde (K)-channel. Thus, using the combined
results obtained from four-channel CIL LC-MS, we could
compare the group coverage of the experimental data with
those of the database data.
Before we applied our group classification program to the

compounds in all databases, we examined the classification
accuracy using the relatively small database, YMDB, where
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manual checking of the program-generated classification results
was manageable. Out of the 1107 filtered metabolites (i.e.,
yeast database entries minus the lipids, inorganic species, and
hydrocarbons), only four metabolites were misclassified,
indicating an error of 0.4%. These four misclassifications
were caused by wrong SMILES or resonance structure, as
shown in Supporting Information Table S2. Thus, the program
was deemed to be very accurate in classifying chemical
structures into different chemical groups.
Figure 2 shows the classification results. In all databases

except HMDB, the hydroxyl or H-channel covers the highest
percentage, i.e., 56.7%, 42.2%, 50.0%, 50.8%, and 66.4% for
MCID, HMDB, KEGG, YMDB, and ECMDB, respectively. In

contrast, the carbonyl (ketone/aldehyde) or K-channel covers
the least, i.e., 22.8%, 20.6%, 24.9%, 20.1%, and 18.5% for
MCID, HMDB, KEGG, YMDB, and ECMDB, respectively. In
total, the four channels can cover 94.7% of the metabolites in
the MCID database containing 2683 filtered metabolites.
Similarly, for HMDB (5506 filtered metabolites), KEGG
(11598), YMDB (1107), and ECMDB (1462), the four-
channel coverage is 85.7%, 86.4%, 85.7%, and 95.8%,
respectively. Lower percentages found in HMDB, KEGG,
and ECMDB correlate with increased percentages of the ester,
amide, and heterocycle groups. Note that, for the groups of
ester, amide, heterocycle, organophosphorus, organosulfur, and
others shown in Figure 2, we used a sequential group-

Figure 2. Classification of chemical groups of (A) MCID zero-reaction library, (C) HMDB, (E) KEGG, (G) YMDB, and (I) ECMDB. Sequential
class-elimination approach was used to determine the remaining groups (i.e., after removing all the four-channel metabolites, a small number of the
remaining metabolites contain the ester group. After removing four-channel metabolites and ester-containing metabolites, a few remaining
metabolites contain the amide group). Percent distributions of metabolites belonging to the four channels including overlapped metabolites with
two or more functional groups in (B) MCID, (D) HMDB, (F) KEGG, (H) YMDB, and (J) ECMDB.
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elimination approach to determine each percentage for clarify
(i.e., 100% in total). For example, in Figure 2A, after
eliminating 94.7% of the filtered metabolites (2683) which
can be analyzed by the four-channel LC-MS method, a small
number of the remaining metabolites (0.4% of the total)
contain the ester group. Thus, if an ester submetabolome
profiling channel is developed in the future, it can only increase
the overall metabolome coverage by 0.4%, assuming all
hydroxyls, carboxyls, carbonyls, amines, and phenols, including
those also containing ester group, have already been covered
by the four-channel method. After eliminating the four-channel
metabolites and the ester group, a small number of the
remaining metabolites (2.1%) contain the amide group. This
elimination process applies to the remaining groups sequen-
tially. These analyses indicate that, based on the current entries
of the studied databases, very high coverage of the chemical
space, ranging from ∼86% to 96%, can be achieved using the
four-channel profiling approach.
Four-Channel Labeling LC-MS Results. Supporting

Information Figure S1 shows a schematic of the four-channel
LC-MS approach. As an example, we present the metabolome
analysis results obtained from human plasma. In the ion
chromatograms of the four-channel submetabolome analyses,
many peaks across the entire separation window in RPLC were
detected, showing both the chemical diversity and enhanced
detectability (Supporting Information Figure S3). The labeling
methods allow the conversion of metabolites not retainable in
RPLC into relatively hydrophobic derivatives that can be
efficiently separated using RPLC. In addition, chemical
labeling allows the enhancement of ionization efficiency by
∼10 to ∼1000 fold.3 There are smaller enhancements for
readily ionizable metabolites and larger enhancements for not-
well-ionizable metabolites, resulting in all labeled metabolites
having similar detectability (see Supporting Information Figure
S4 from the analysis of an equal-mole mixture of 22 labeled
standards). Equalizing metabolite ionization efficiency means
that the MS peak intensity of a labeled metabolite is more
reflective of the metabolite concentration. As a consequence,
peak intensity differences for different labeled metabolites are
mainly caused by concentration differences, rather than
ionization efficiency differences.
Figure 3A shows the distribution of the absolute intensities

of metabolite peak pairs detected from the labeled plasma
samples. Within the detection dynamic range of the instru-
ment, there is a clear trend of an increase in the number of
peak pairs detectable as the peak intensity decreases. Thus, we
can increase the metabolome coverage significantly by using a
highly sensitive CIL LC-MS method to detect an increasing
number of lower concentration metabolites. Interestingly, the
four submetabolomes have similar distributions, indicating
similar concentration distributions of these different groups of
metabolites in plasma.
To further compare the number of metabolites detected in

the four channels, Figure 3B shows the Venn diagram of the
number of peak pairs detected in each channel. Because of lack
of structure identities for many of the detected metabolites, in
this comparison, we assumed that the same metabolite was
detected in two channels if the same accurate mass of the
intact metabolite [i.e., mass of a labeled metabolite minus the
mass of labeling tag(s)] was found in the two channels. For
example, there are 29 peak pairs detected in all four channels,
as these peak-pair masses minus the mass of labeling tag(s)
give the same mass; each one of them is deemed to be from the

same metabolite that were detected four times. This is a
conservative approach of determining the unique metabolites
detected, as one would expect that metabolites with the same
mass may have different structures (e.g., isomers; see below)
and thus belong to different molecules. There are 1961, 2309,
1702, and 1459 peak pairs detected in the amine/phenol,
carboxyl, carbonyl, and hydroxyl submetabolome, respectively.
If we only count the overlapped metabolites as one unique-
mass metabolite, out of a combined total of 7431 peak pairs
detected from the four channels, there are 6109 unique-mass
peak pairs.
Many of the detected peak pairs can be identified or

matched to metabolome databases. Table 1 shows the number
of identified peak pairs from each channel in three tiers with
the lists shown in Supporting Information Tables S3−S6. For
the plasma sample, out of the 7431 pairs detected, we
positively identified 326 peak pairs based on accurate mass and
retention time matches in tier 1. A few of the peak pairs could
be matched to the same metabolite (e.g., carbonyl_594,
carbonyl_635, and carbonyl_657 matched to butanal). These
matches were manually checked from the LC-MS data and are
likely structural isomers of one chemical formula. This example
suggests that using mass-match to filter out overlap peaks from
two or more channels, as discussed above, might remove some
same-mass metabolites with different structures. In tier 2 where
authentic standards are not available, but accurate mass and
predicted RT data are available in the Linked Identity (LI)
library, we identified 344 peak pairs by mass and RT matches.
Thus, a total of 670 peak pairs (9.0%) can be identified as

Figure 3. (A) Percentage of peak pair detected in four-channel LC-
MS analysis of plasma as a function of peak intensity. (B) Venn
diagram of the numbers of peak pairs detected in four channels.
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high-confidence results (tier 1 and tier 2). In tier 3, the
remaining peak pairs not identified in tiers 1 and 2 were mass-
searched against the HMDB, MCID-1R, and MCID-2R
libraries in sequence. There were 2628, 2851, and 777 peak
pairs (35.4%, 38.4%, and 10.5%) matched to the three libraries,
respectively. In total, 6926 peak pairs (93.2%) were either
identified or matched to databases. The remaining 6.8% of
detected pairs may belong to metabolites that are not included
in any of the searched databases.
For yeast samples, a similar approach was applied for peak

pair detection and metabolite identification using four-channel
LC-MS. In total, we detected 5641 peak pairs, including 1747
from A-channel, 1867 from C-channel, 1006 from H-channel,
and 1021 from K-channel (Supporting Information Figure S5).
After filtering the same-mass metabolites detected in two or

more channels, we have 4955 unique-mass peak pairs. Table 2
summarizes the identification results. From the 5641 peak pairs
detected, 243 and 188 peak pairs were identified in tier 1
(Supporting Information Table S7) and tier 2 (Supporting
Information Table S8), respectively. Thus, a total of 431 peak
pairs (7.6%) can be identified as high-confidence results (tier 1
and tier 2). In tier 3, we found 880, 3442, and 514 peak pairs
(15.6%, 61.0%, 9.1%) matched to YMDB, MCID-1R, and
MCID-2R libraries, respectively (Supporting Information
Tables S8 and S9). In total, 5267 peak pairs (93.3%) were
either identified or matched to databases.
It should be noted that the peak intensity ratios measured in

the triplicate analysis of 1:1 12C-/13C-labeled plasma can be
used to gauge the accuracy and precision for relative
quantification of this particular mixture. When plotting the

Table 1. Summary of the Number of Peak Pairs Identified or Matched against Different Compound Libraries from the Human
Plasma Samples Analyzed Using Four-Channel LC-MS

A-channel C-channel H-channel K-channel total per tier Supporting Information table

tier 1 208 54 23 41 326 Table S3
tier 2 71 157 68 48 344 Table S4
tier 3-HMDB 774 760 449 645 2628 Table S5
tier 3-MCID1R 570 1014 609 658 2851 Table S6
tier 3-MCID2R 168 242 165 202 777 Table S6
total per channel 1791 2227 1314 1594 6926

Table 2. Summary of the Number of Peak Pairs Identified or Matched against Different Compound Libraries from the Yeast
Cell Samples Analyzed Using Four-Channel LC-MS

A-channel C-channel H-channel K-channel total per tier Supporting Information table

tier 1 123 68 20 32 243 Table S7
tier 2 69 80 18 21 188 Table S8
tier 3-YMDB 297 261 163 159 880 Table S9
tier 3-MCID1R 944 1255 610 633 3442 Table S10
tier 3-MCID2R 99 155 116 144 514 Table S10
total per channel 1532 1819 927 989 5267

Figure 4. Venn diagram of the numbers of metabolites in four channels from the compound entries in (A) MCID, (B) HMDB, (C) KEGG, (D)
YMDB, and (E) ECMDB.
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distribution of peak pairs detected as a function of the average
peak ratio and their relative standard deviation (RSD)
(Supporting Information Figure S6), most of the peak pairs
in four submetabolome profiling gave the ratio value close to
the expected ratio of 1.0, demonstrating high accuracy. The
RSD values are less than 20% for more than 95% of the pairs
with an average RSD of 5.1% and thus the analytical precision
was also very high. We note that we did not study the interday
and intraday repeatability in this work. However, all the
individual labeling methods have been used in a number of
published metabolomics studies where quality control (QC)
samples were used to gauge interday and intraday repeatability
over a number of days. QC samples were clustered tightly,
indicating excellent repeatability.24 The linearity of peak ratio
measurement has been addressed in previously reports such as
the original paper published on dansylation labeling for amine/
phenol submetabolome profiling.3 Over 100-fold relative
changes could be measured.3

Overlaps of Multifunctional Metabolites. Figure 4
shows the Venn diagrams of the numbers of database
metabolites belonging to individual channels and overlaps
among different channels. There are clearly many metabolites
belonging to two or more channels. Taking the MCID
database as an example (Figure 4A), there are five metabolites
in all channels. Most of the overlaps occur for metabolites
containing two functional groups. However, in our four-
channel LC-MS results, most of the metabolites were uniquely
detected in only one channel.
Much smaller overlaps found can be attributed to the fact

that, by design, we developed the four-channel methods with
due consideration of minimizing redundant analyses of the
same metabolite in different channels. For example, in the
analysis of the carboxyl acid submetabolome, we used 6 M HCl
to acidify the sample, followed by organic solvent extraction of
the acids. The amines and some phenols would be positively
charged at this low pH and thus not be extracted by the
organic solvent. This can be inferred from the analysis of
amino acids; all 20 amino acids can be readily detected in the
amine/phenol channel, but only 2−3 can be detected in the
carboxylic acid channel. Similarly, for the analysis of the
hydroxyl submetabolome, we used an organic solvent to extract
the neutral metabolites containing hydroxyl groups from the
highly acidified sample. In the analysis of the carbonyl
submetabolome, the labeling solution is acidic under which
dansylhydrazine preferentially reacts with neutral metabolites
containing carbonyl groups. The charged species such as
metabolites containing both amine and carbonyl groups may
not react with dansylhydrazine. Another contributing factor
might be related to the changed reactivity of a functional group
in metabolites with two or more groups. For example, we
found that several keto-acids with carbonyl and carboxyl
groups conjugated together (e.g., oxaloacetic acid and
acetoacetic acid) are difficult to be labeled in the carbonyl
channel.
Group Under-representation. While the compound

entries in a database are by no means perfect in terms of
coverage (i.e., not including all metabolome compounds of an
organism) and trueness (i.e., the presence of false entries), the
group classification shown in Figure 2 for several databases
gives consistent group distributions. For example, the hydroxyl
group is by far the largest group, except in HMDB where it is
the second largest. However, in our experimental data set, for
both plasma and yeast samples, the number of hydroxyl-

containing metabolites detected is smaller than the other
groups. This suggests that the overall coverage achieved by the
current four-channel experiments is lower than the database-
derived theoretical coverage; the exact percentage of reduction
is unknown. It appears that the sample preparation workflow
or labeling reaction of the hydroxyl channel is not fully
optimized. More development work should be devoted to
optimize the hydroxyl submetabolome profiling.

■ CONCLUSIONS
After filtering out the lipids, inorganic species, and hydro-
carbons that are not targeted for analysis by CIL LC-MS, we
found that 86% to 96% of the metabolites in the studied
databases contain one or more of the five functional groups:
amine, phenol, hydroxyl, carbonyl, and carboxyl. Thus, in-
depth profiling of these chemical groups can generate a very
high coverage of the metabolome. We described a four-channel
CIL LC-MS approach to analyze the hydroxyl (H), amine/
phenol (A), carboxyl (C), and carbonyl (K) submetabolomes,
separately.
For future work, we will need to optimize the current

method for hydroxyl submetabolome profiling and develop
labeling methods to analyze other groups of metabolites
currently not covered by the four-channel approach (e.g.,
esters and amides). We note that the compound entries in a
current database may under- or over-represent certain groups
of metabolites. For example, there may be the intermediate
compounds of known metabolites that have not been
documented, as evident from the mass-matches of many
predicted metabolites from one or two metabolic reactions of
known metabolites (i.e., MCID-1R and MCID-2R). As our
knowledge of metabolites expands with the detection and
identification of known unknowns and unknown unknowns,
we will surely increase the coverage and reduce the false entries
in a metabolome database of an organism. We envisage that
the four-channel LC-MS approach, with perhaps additional
channels, will play an important role in expanding our
knowledge of chemical composition of a metabolome.
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