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A multiomics approach to heterogeneity in
Alzheimer’s disease: focused review and
roadmap
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Aetiological and clinical heterogeneity is increasingly recognized as a common characteristic of Alzheimer’s disease and related

dementias. This heterogeneity complicates diagnosis, treatment, and the design and testing of new drugs. An important line of

research is discovery of multimodal biomarkers that will facilitate the targeting of subpopulations with homogeneous pathophysio-

logical signatures. High-throughput ‘omics’ are unbiased data-driven techniques that probe the complex aetiology of Alzheimer’s

disease from multiple levels (e.g. network, cellular, and molecular) and thereby account for pathophysiological heterogeneity in

clinical populations. This review focuses on data reduction analyses that identify complementary disease-relevant perturbations for

three omics techniques: neuroimaging-based subtypes, metabolomics-derived metabolite panels, and genomics-related polygenic risk

scores. Neuroimaging can track accrued neurodegeneration and other sources of network impairments, metabolomics provides a

global small-molecule snapshot that is sensitive to ongoing pathological processes, and genomics characterizes relatively invariant

genetic risk factors representing key pathways associated with Alzheimer’s disease. Following this focused review, we present a

roadmap for assembling these multiomics measurements into a diagnostic tool highly predictive of individual clinical trajectories, to

further the goal of personalized medicine in Alzheimer’s disease.
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Introduction
Alzheimer’s disease is a complex, multifactorial pathology

that manifests itself along a continuum of conditions, ran-

ging from asymptomatic, to mild cognitive impairment

(MCI), to dementia (specifically Alzheimer’s disease demen-

tia). Trials of disease-modifying therapies remain unsuccess-

ful, and these persistent failures have been attributed to

(i) intervention late in the disease process (i.e. symptomatic

stage), by which time extensive irreversible damage has

accrued; and (ii) lack of precision intervention targets in

a multifactorial condition. Accordingly, an important line

of current research is directed at the discovery of multi-

modal biomarkers that will help facilitate the detection of

Alzheimer’s disease in asymptomatic populations, and the

adaptation of intervention regimens to different target sub-

populations in prevention trials (Anstey et al., 2015;

Olanrewaju et al., 2015). This work reviews recent data-

driven approaches to biomarker discovery, in three omics

fields that capture complementary aspects of neurodegen-

eration and Alzheimer’s disease risk factors. We further

propose a roadmap for integrating these multiomics bio-

markers to advance our understanding of heterogeneity in

Alzheimer’s disease and other age-related dementias, and

promote efficacy in intervention trials.

Established Alzheimer’s disease biomarkers currently cap-

ture three facets of the disease pathophysiology: amyloid-

osis (A), tauopathy (T), and specific aspects of

neurodegeneration (N) or A/T/N (Jack et al., 2018).

Although these biomarkers have been usefully applied to

the crucial goal of early Alzheimer’s disease detection

(Sperling et al., 2011), they fall short in explaining the

heterogeneity of individual clinical trajectories, and their

ability to predict differential cognitive decline is modest

(Dumurgier et al., 2017). Predicting progression to demen-

tia is challenging, as patients diagnosed with probable

Alzheimer’s disease dementia show considerable heterogen-

eity in the cognitive domains impaired (Scheltens et al.,

2016), and the presence or severity of established

Alzheimer’s disease biomarkers. For example, amyloid-

osis-and-tauopathy-defined ‘pure Alzheimer’s disease neuro-

pathology’ is observed in only 30–50% of patients with

probable Alzheimer’s disease dementia (Beach et al.,

2012; Robinson et al., 2018). The remaining cases show

co-occurrence of multiple brain pathologies that overlap

with other neurodegenerative diseases (NDDs) of ageing,

such as cerebral small vessel disease, and Lewy body de-

mentia. Minimum to above-threshold levels of Alzheimer’s

disease pathology are also observed in a considerable pro-

portion (39%) of dementia patients not clinically diagnosed

as probable Alzheimer’s disease (Beach et al., 2012).

Alzheimer’s disease pathology has also been demonstrated

in post-mortem studies of cognitively normal older adults

(Bennett et al., 2006), and it remains unclear whether such

individuals would have developed Alzheimer’s disease

symptoms with time, should they have lived longer

(Jagust, 2013). Overall, ‘top-down’ clinical labels, based

primarily on cognitive symptoms, imperfectly align with

biomarkers of neurodegeneration. Additional biomarkers

are thus urgently needed to characterize the clinicopatholo-

gical heterogeneity of Alzheimer’s disease, and to disam-

biguate it from other age-related NDDs and normal

ageing (Jack et al., 2018).

A radically different paradigm to NDDs is to move away

from ‘top-down’ clinical labels, and concentrate on patho-

logical signatures built ‘bottom up’ using unsupervised ma-

chine learning algorithms and high-throughput ‘omics’

metrics that screen global facets of an organism. ‘Omics’

refers to several areas of study in biology, all of which end

in the suffix -omics, and implies a comprehensive (or

global) assessment of the subject using high-throughput

technologies. For example, the study of an organism’s

entire collection of genes (the genome) versus a single or

a few genes is termed genomics (Hasin et al., 2017). Data-

driven approaches on ‘omics’ technologies-generated data

provide new opportunities to probe the complex aetiology

of Alzheimer’s disease from multiple levels (e.g. network,

cellular, and molecular), and to identify biomarker signa-

tures with high diagnostic/prognostic value. This review

focuses on the following omics approaches: brain connec-

tomics, metabolomics, and genomics. These omics data

capture complementary information on Alzheimer’s disease

emergence and progression: brain connectomics (and

morphometry) can track accrued neurodegeneration and

other sources of network impairments, metabolomics pro-

vides a global small molecule snapshot that is sensitive to

ongoing pathological processes, and genomics characterizes

relatively invariant genetic risk factors representing key

pathways associated with Alzheimer’s disease (Jack et al.,

2018). The high-dimensional nature of omics ‘big data’ can

prove challenging to process, manipulate, and visualize,

even when a single modality is involved. Multiple redun-

dancies are often present in these measures, and not all

data points provide independent information as they tend

to co-vary because of shared biological processes. We focus

this review on three omics data reduction techniques that

capture disease-relevant population heterogeneity with a

limited number of indicators: neuroimaging-based subtypes,

metabolite panels, and polygenic risk score (PRS).

Neuroimaging subtypes are based on data-driven algo-

rithms that identify patient subgroups with homogeneous

brain imaging features. Metabolite panels are developed via
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data-driven algorithms applied to thousands of small mol-

ecules representing global biochemical events and distin-

guishing clinical phenotypes. PRS and other empirically

derived representations of interactive or multi-gene risk

may represent key domains of mechanisms and pathways

to Alzheimer’s disease. Following this focused review, we

discuss the rationale and challenges for assembling multio-

mics diagnostic tools highly predictive of individual clinical

trajectories in the context of Alzheimer’s disease, and in

particular, the importance of pathophysiological heterogen-

eity in research clinical cohorts, with the intent to extend

these findings to the discrimination of Alzheimer’s disease,

as well as other dementia related subtypes.

Materials and methods
We conducted parallel focused reviews of PubMed articles
published between January 2011 to June 2018 in three
omics domains: brain connectomics (and morphometry),
metabolomics, and genomics. It should be noted that for
brain connectomics (and morphometry), we only focused on
MRI-based studies, and did not include studies using PET
imaging methods, as data-driven subtype literature is sparse
in the latter. We included studies investigating Alzheimer’s
disease in humans and published in English (termed
‘common’ inclusion criteria). Additional articles (that met cri-
teria) were identified by scanning the reference lists of se-
lected PubMed articles. Described in the following three
sections are search characteristics specific to each omics
domain. Characteristics of the 40 domain-specific omics stu-
dies included are provided in Supplementary Tables 1, 2 and
5.

Brain morphology and connectomics

Search term combinations used for brain morphology and con-
nectomics in neuroimaging were: (i) Alzheimer’s disease OR
Alzheimer pathology AND subtype; (ii) mild cognitive impair-
ment OR amnestic mild cognitive impairment OR MCI OR
amnestic MCI AND hierarchical clustering; resting-state
AND functional MRI AND Alzheimer AND clustering;
(iii) Alzheimer’s disease OR Alzheimer pathology AND struc-
tural subtype; (iv) Alzheimer’s disease OR Alzheimer path-
ology AND structural MRI AND clustering; (v) resting-state
AND functional MRI AND Alzheimer AND hierarchical clus-
tering; (vi) diffusion MRI AND Alzheimer AND clustering;
and (vii) diffusion MRI AND Alzheimer AND hierarchical
clustering; diffusion MRI AND hierarchical clustering. To
these we applied the ‘common’ inclusion criteria. Thereafter,
only studies reporting Alzheimer’s disease spectrum subgroups
identified using data-driven methods were included. It should
be noted that neuroimaging-based subtyping is an emergent
field and there is still a lack of consistent terminology.
Therefore, to avoid missing relevant studies due to stringent
use of terminology, search combinations (i) and (ii), using
relaxed and inclusive keywords, captured all of the morphom-
etry-based literature. In total, 12 papers met our criteria, and
were reviewed.

Metabolomics

Search term combinations for metabolomics were: (i) Alzheimer’s
disease AND metabolomics panels; (ii) Alzheimer’s disease
AND metabolomics profiles; (iii) Alzheimer’s disease AND
metabolomics networks; (iv) Alzheimer’s disease AND meta-
bolomics pathways; and (v) Alzheimer’s disease AND metabo-
lomics biomarkers. To these we applied the common inclusion
criteria. We further excluded: reviews and technical reports;
articles not relevant to Alzheimer’s disease metabolomic
panels, pathways, or networks; and studies using a targeted
metabolomics approach. Five papers were identified from ref-
erence list scans. In total, 11 studies were reviewed. Details on
key metabolites highlighted in the 11 studies were compiled
from three different databases: Human Metabolome Database
(HMDB, http://www.hmdb.ca/), Kyoto Encyclopedia of Genes
and Genomes (KEGG, https://www.genome.jp/kegg/pathway.
html) Pathway Database, and PubMed. These details were
used to generate Fig. 2B and are provided in Supplementary
Table 3.

Genomics

Search term combinations used for the genomics were:
(Polygenic Risk Scale OR Polygenic Risk Index OR Genetic
Risk Score OR Genetic Risk Scale OR Genetic Risk Index)
AND (Alzheimer Disease OR Alzheimers Disease OR
Alzheimer’s Disease), which identified 264 potential papers.
To these we applied the ‘common’ inclusion criteria, followed
by exclusion of single-gene studies. In total, 17 studies were
reviewed. References used for the compilation of the genes in
Supplementary Table 4 are provided in the Supplementary
material.

Brain subtypes

Anatomical subtypes

The spatial distribution of brain atrophy on structural MRI

is highly heterogeneous in MCI, and Alzheimer’s disease de-

mentia patients (Nettiksimmons et al., 2014; Poulakis et al.,

2018). Using data-driven clustering algorithms, 11 studies

have attempted to subtype and characterize this inherent

heterogeneity (Supplementary Table 1). Seven studies re-

ported at least three distinct atrophy subtypes in

Alzheimer’s disease dementia (Noh et al., 2014; Hwang

et al., 2016; Park et al., 2017; Poulakis et al., 2018; ten

Kate et al., 2018), or mixed (Alzheimer’s disease dementia

and cognitively normal) cohorts (Varol et al., 2017; Tam

et al., 2019). Subtypes were generally consistent across

studies, and can be described as diffuse, medial temporal-

predominant (temporal), and temporo-occipito-parietal-pre-

dominant (posterior) (Fig. 1D). They were generated by

applying (i) hierarchical agglomerative clustering using

Ward’s clustering linkage (Noh et al., 2014; Hwang et al.,

2016; Tam et al., 2019), Louvain clustering (Park et al.,

2017), random forest clustering (Poulakis et al., 2018), or

non-negative matrix factorization (ten Kate et al., 2018) on
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Figure 1 Brain morphology and connectomics Alzheimer’s disease-related subtypes. Neuroimaging provides insight into the effect

of neurodegeneration on brain health. There exist different tools that can capture distinct, yet complementary, aspects of brain structure and

function. The most established neuroimaging marker of neurodegeneration is grey matter atrophy, measured by structural MRI. Structural MRI is a

non-invasive technique widely used in both research and clinical practice. To generate structural maps, individual structural MRI scans are first

spatially aligned to a reference template or atlas (A). Then for each individual and each voxel (smallest volume element in MRI data), a metric

characterizing the local structure of the grey matter is generated, such as (A) grey matter volume, cortical thickness or surface area. Using these

approaches, it is possible to monitor the thinning of grey matter, which likely reflects the death of neuronal cell bodies at advanced stages of

neurodegeneration. Synaptic disruption is an early event in Alzheimer’s disease (Sperling et al., 2011), and functional networks may have the ability

to compensate the impact of neurodegeneration on cognitive symptoms (Franzmeier et al., 2017). For these reasons, intrinsic functional con-

nectivity from resting state functional MRI is an emerging Alzheimer’s disease biomarker that holds promise for early diagnosis (Sperling et al.,

2011; Badhwar et al., 2017). To analyse resting state functional MRI, select regions in canonical brain networks previously established in the

literature are generally considered (B). An individual resting state functional MRI connectivity map can be generated for different networks, with

the default mode, limbic, and salience networks being the key components affected by Alzheimer’s disease (Badhwar et al., 2017) (B). Structural

and functional brain maps can enter a subtyping procedure, which identifies groups of individuals with homogeneous brain maps (C).The number

of subtypes are defined a priori or through various metrics for model selection (Seghier, 2018), for example n = 3 in C. A subtype map is

generated by averaging the maps within each subgroup and subtracting the grand average (i.e. demeaned) to emphasize the features of the

subtype. Chi square statistics are applied to identify groups that include a greater number of Alzheimer’s disease patients than expected by chance

(illustrated by a ‘�AD’ annotation for subtype 2 in C). (D) The subtyping procedure was applied on maps of grey matter density from cognitively

normal and Alzheimer’s disease dementia individuals in the ADNI database (n = 377). Four of seven subtypes were identified as Alzheimer’s

disease dementia-related (results adapted from Tam et al., 2019). Three subtypes were consistent with previous reports: posterior (or temporo-

occipito-parietal-predominant), diffuse, and temporal (or medial temporal-predominant) atrophy subtypes. A novel language atrophy subtype was

also identified. (E) The subtype procedure was applied to resting state functional MRI data collected on cognitively normal, MCI, and Alzheimer’s

disease dementia individuals in a dataset pooling ADNI2 with several independent samples (n = 130). Three subtypes were extracted for three

resting state networks known to be impacted by Alzheimer’s disease: default mode, salience, and limbic (Badhwar et al., 2017). One Alzheimer’s

disease dementia/MCI-related subtype was found for each network. The salience and default mode followed similar patterns: increased within-

network connectivity, and a lower (negative) connectivity between networks. The limbic subtypes showed lower connectivity with frontal regions,

and increased connectivity with occipital regions. Results adapted from Orban et al. (2017b). The section on ‘Brain subtypes’ compares results

from the abovementioned and other studies with similar approaches and objectives. Supplementary Table 1 provides detailed characteristics of

the 12 neuroimaging subtyping studies (structural MRI and resting state functional MRI) that met our search criteria. BOLD = blood oxygenation

level-dependent signal.
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cortical thickness or grey matter density maps; or (ii) clus-

tering on grey matter density maps using a novel approach

called HYDRA (Varol et al., 2017). Good agreement across

studies may, in part, reflect usage of the same data sample

[Alzheimer’s Disease Neuroimaging Initiative (ADNI)] for

subtype identification in four studies (Hwang et al., 2016;

Varol et al., 2017; Poulakis et al., 2018; Tam et al., 2019).

Some studies report two-subtype decomposition (Dong et al.,

2016; Malpas, 2016), but these lack interstudy consensus.

Using model-based clustering on regional cortical thickness

measures from ADNI, Malpas (2016) reported normal and

atrophic-entorhinal subtypes in a sample including

Alzheimer’s disease dementia and cognitively normal individ-

uals. The atrophic-entorhinal subtype demonstrated consid-

erable heterogeneity in entorhinal thickness, suggesting the

presence of additional subtypes (Malpas, 2016). Dong et al.

(2016) reported limbic-insular and parietal-occipital atrophy

subtypes using CHIMERA clustering on brain volume data

from Alzheimer’s disease dementia and cognitively normal

ADNI participants. In a separate study, the same group re-

ported four atrophy subtypes using CHIMERA: normal,

temporal, and two diffuse subtypes—one with predominant

temporal involvement (diffuse-temporal), and one without

(diffuse) (Dong et al., 2017). Visually, the diffuse subtype

from CHIMERA shared some overlap with the posterior

subtype described previously. In general, the reported sub-

types (Dong et al., 2017) fit better with the three subtype

solution, considering that, unlike previous studies, the

CHIMERA study included cognitively normal individuals.

Finally, Tam et al. (2019) identified a fourth atrophy sub-

type involving several language-related areas.

The choice of the number of subtypes is, to some degree,

arbitrary. Two studies showed that their three subtypes

could be decomposed into six (Noh et al., 2014), or

more (Tam et al., 2019) homogeneous groups. Finally, an

additional study looking at heterogeneity with a linear mix-

ture model, instead of a discrete cluster analysis, showed

that most individuals tend to express varying levels of mul-

tiple subtypes (Zhang et al., 2016). Continuous measures of

subtype similarity are thus more advisable than discrete

assignment (Zhang et al., 2016; Tam et al., 2019).

We now highlight various associations between

Alzheimer’s disease markers/risk factors and the three atro-

phy subtypes consistently reported. In three studies,

Alzheimer’s disease dementia patients with the posterior

subtype were reported to be the youngest, and had the

earliest age at onset (Noh et al., 2014; Hwang et al.,

2016; Park et al., 2017). They also demonstrated greater

PET-detectable amyloidosis (Hwang et al., 2016), and

pathological levels of CSF amyloid-b42 and tau (Noh

et al., 2014; Varol et al., 2017; ten Kate et al., 2018).

Differences across subtypes were reported with fluorodeox-

yglucose-PET-detectable glucose hypometabolism (Hwang

et al., 2016), and white matter hyperintensities (ten Kate

et al., 2018). Subtype-specific associations with Alzheimer’s

disease-related genes were also observed, specifically, apo-

lipoprotein E (APOE) (Noh et al., 2014; Varol et al.,

2017), CD2AP (CD2-associated protein) (Varol et al.,

2017), SPON1 (Spondin-1) (Varol et al., 2017),

LOC390956 or PPIAP59 (peptidyl-prolyl cis-trans isomer-

ase A pseudogene) (Varol et al., 2017), though the associ-

ation with APOE was not consistently found (Hwang

et al., 2016). Associations of subtypes with cognition

were observed for global (Varol et al., 2017; Tam et al.,

2019) and domain-specific (e.g. episodic memory) (Noh

et al., 2014; Park et al., 2017; Poulakis et al., 2018; ten

Kate et al., 2018) measures, but not by all studies (Hwang

et al., 2016). Associations between subtypes and sex were

found to be significant in two (Noh et al., 2014; Varol

et al., 2017) of four (Noh et al., 2014; Hwang et al.,

2016; Varol et al., 2017; Tam et al., 2019) studies.

Functional subtypes

By coupling cluster analysis and resting state functional

MRI, a preprint report by Orban et al. (2017b) investigated

connectivity subtypes in cognitively normal, MCI, and

Alzheimer’s disease dementia patients (Supplementary

Table 1). They noted associations between functional con-

nectivity subtypes and cognitive symptoms in the default

mode, limbic, and salience networks in MCI, and

Alzheimer’s disease dementia patients (Fig. 1E). Limbic sub-

types were also associated with Alzheimer’s disease bio-

markers (CSF amyloid-b42 levels, APOE4 genotype) in an

independent cohort at increased risk for familial

Alzheimer’s disease, suggesting that functional connectivity

subtypes may be sensitive to the presence and progression

of preclinical disease (Orban et al., 2017b).

Summary

Our review found convergent evidence of distinct brain at-

rophy subtypes in Alzheimer’s disease dementia patients,

including at least three data-driven atrophy subtypes: diffuse,

temporal, and posterior. These structural subtypes seem to

associate with established biomarkers, risk factors, and clin-

ical symptoms of Alzheimer’s disease, as well as cognitive

subtypes: e.g. temporal subtype with memory impairment,

and diffuse subtype with impaired executive function

(Zhang et al., 2016). While Alzheimer’s disease associated

resting state functional subtypes in the default mode, limbic,

and salience networks were only reported by one study

(Orban et al., 2017b), the finding is in line with a recent

meta-analysis (Badhwar et al., 2017) reporting consistent

alterations in connectivity in the same three networks in

patients with Alzheimer’s disease dementia, MCI, or in

both groups. The picture emerging from functional MRI

data is one of aberrant between-network connectivity initiat-

ing in the mesolimbic network at the preclinical stage and

propagating to the salience and default mode network with

Alzheimer’s disease progression (Orban et al., 2017b).
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Metabolomics panels

Metabolite panels

We reviewed six Alzheimer’s disease studies that con-

structed metabolite panels from top discriminant metabol-

ites in biofluids: two plasma, one serum, two saliva, and

one CSF (Supplementary Table 2). Platforms used for meta-

bolomics analysis, performed alone or in combination,

were as follows: ultra-performance liquid chromatography

mass spectrometry (MS) and gas MS (Wang et al., 2014),

liquid chromatography MS (Mapstone et al., 2017), faster

ultra-performance liquid chromatography MS (Liang et al.,

2015, 2016), liquid chromatography-tandem (also with

solid phase extraction) and gas MS (Czech et al., 2012),

and nuclear magnetic resonance spectroscopy (Figueira

et al., 2016) (Supplementary Table 2).

Using plasma metabolome data, Wang et al. (2014) con-

structed a six-metabolite panel to discriminate Alzheimer’s

disease dementia from cognitively normal, and a five-me-

tabolite panel to discriminate amnestic MCI from cogni-

tively normal. Arachidonic acid, N,N-dimethylglycine, and

thymine were present in both panels. Association of these

three panel metabolites with lipid, amino acid, and nucleic

acid metabolism, respectively, suggested specific metabolic

deregulations early in Alzheimer’s disease, resulting largely

in increased inflammation and oxidative stress. Arachidonic

acid (a polyunsaturated fatty acid) is a known modulator

of neuroinflammation (Wang et al., 2014), while perturb-

ations in N,N-dimethylglycine, and thymine levels can lead

to oxidative DNA damage (Wang et al., 2014). Mapstone

et al. (2017) used a 12 plasma metabolite panel to discrim-

inate the following cohorts from cognitively normal: older

adults with superior memory; amnestic MCI + Alzheimer’s

disease dementia patients; and participants who converted

to amnestic MCI or Alzheimer’s disease dementia in

�2 years. Similar to Wang et al. (2014), several panel me-

tabolites were associated with lipid or amino acid metab-

olism. Panel metabolites were also found to be constituents

of pathways regulating oxidative stress, inflammation, and

nitric oxide bioavailability. Using serum metabolome data,

Liang et al. (2016) identified a panel of two upregulated

lipid metabolites (7-ketocholesterol, sphinganine-1-phos-

phate) that discriminated MCI from Alzheimer’s disease

dementia. 7-Ketocholesterol, a major oxidation product of

cholesterol, has been reported to increase with Alzheimer’s

disease development, with potential role in the inflamma-

tory responses (Testa et al., 2016), and amyloid-b forma-

tion/accumulation and induced neurotoxicity (Phan et al.,

2013). Sphinganine-1-phosphate is an intermediate of

sphingolipid metabolism, and sphingolipids have also

been suggested to modulate the inflammation-associated

pathogenesis of Alzheimer’s disease, amyloid-b levels, and

oxidative stress-driven neuronal apoptosis (Jazvinšćak

Jembrek et al., 2015; Mizuno et al., 2016; Lin et al.,

2017). Sphinganine-1-phosphate was also present in a

three-metabolite panel constructed from the salivary meta-

bolome, and discriminated patients with Alzheimer’s dis-

ease dementia from cognitively normal individuals (Liang

et al., 2015). The other two panel members, ornithine and

phenyllactic acid, were amino acid metabolites (Ogata

et al., 1999) with links to the same oxidative stress path-

way reported by Mapstone et al. (2017). A separate study

using saliva reported a seven-metabolite panel that discri-

minated pre-dementia (i.e. 5 years prior to dementia onset)

from cognitively normal (Figueira et al., 2016). Of these

seven metabolites, the inflammatory modulator histamine

was also included as a panel metabolite by Mapstone

et al. (2017), as mentioned before. Overall, the metabolites

included in the panel were associated with amino acid,

lipid, or energy metabolism. Czech et al. (2012) assessed

multiple combinations of 16 CSF metabolites to discrimin-

ate Alzheimer’s disease dementia from cognitively normal.

Highest discrimination was obtained with a five metabolite

panel consisting of amino acids and cortisol (Czech et al.,

2012). Our focused review of Alzheimer’s disease-asso-

ciated metabolite panels highlight that the majority of dis-

criminant molecules detected in biofluids are involved in

amino acid, lipid, or nucleic acid metabolism (Fig. 2B).

Metabolomics pathways and
networks

We reviewed five Alzheimer’s disease studies that followed-

up non-targeted metabolomics research in biofluids with

pathway or network analyses: two plasma, one plasma

plus CSF, and two serum (Supplementary Table 2).

Platforms used for metabolomics analysis were as follows:

ultra-performance liquid chromatography-tandem MS (de

Leeuw et al., 2017), MS (Graham et al., 2015), liquid chro-

matography MS (Trushina et al., 2013), gas MS (González-

Domı́nguez et al., 2015), and ultra-performance liquid

chromatography and gas MS (Orešič et al., 2011)

(Supplementary Table 2).

In plasma, de Leeuw et al. (2017) identified 26 metabol-

ites composed of mainly amino acids and lipids with sig-

nificantly altered levels in Alzheimer’s disease dementia

patients. Network analyses suggested a shift in

Alzheimer’s disease towards amine and oxidative stress

compounds, known to cause imbalances in neurotransmit-

ter production, amyloid-b generation, inflammation, and

neurovascular health. Perturbations in amino acid metabol-

ism (interlinked polyamine and L-arginine pathways) were

also demonstrated in the plasma metabolome of MCI to

Alzheimer’s disease dementia converters (Graham et al.,

2015). Changes in polyamine and L-arginine metabolism

have been linked to neurotoxicity, and deregulations in

genesis and/or death of neural cells and neurotransmitter

production (Graham et al., 2015). Other metabolic path-

ways notably impacted were prostaglandin, glucose and

cholesterol (Graham et al., 2015). As inflammation promot-

ing cyclo-oxygenase enzymes are involved in prostaglandin
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synthesis, altered prostaglandin biosynthesis in converters

suggests an underlying inflammatory response (Graham

et al., 2015). Deregulated glucose metabolism in converters

may be due to brain insulin resistance and microvascular

disease (Graham et al., 2015). Moreover, perturbations in

cholesterol metabolism have been linked to amyloid-b de-

position and tau hyperphosphorylation (Gamba et al.,

2012; Graham et al., 2015). Cholesterol metabolism

Figure 2 A typical Alzheimer’s disease metabolomics biomarker discovery pipeline. Metabolomics is a relatively recent addition to

the systems biology toolkit for the study of NDDs of ageing (Wilkins and Trushina, 2017). It encompasses the global study of small molecules (50–

1500 Da in mass) that are substrates and products of metabolism. Together, these metabolites (e.g. amino acids, antioxidants, vitamins) represent

the overall physiological status of the organism. An individual’s metabolic activity is influenced by an individual’s genotype and environment

(Kaddurah-Daouk et al., 2011). Analysis of the metabolome, therefore, provides an opportunity to study the dynamic molecular phenotype of an

individual. Untargeted metabolomics approaches are increasingly used to compare two or more groups (e.g. Alzheimer’s disease dementia and

cognitively normal participants) and identify metabolite profiles associated with a disease. These profiles provide insight into underlying disease

mechanisms, as well as constitute candidates for biomarker discovery and drug development. In the field of Alzheimer’s disease research,

metabolomics studies (targeted and untargeted) over the past decade have examined several biofluids and tissues, including serum, plasma, CSF,

saliva, urine, and brain tissue (Wilkins and Trushina, 2017). Technologies include NMR (nuclear magnetic resonance) spectroscopy and mass

spectrometry. (A) A typical Alzheimer’s disease metabolomics biomarker discovery pipeline using mass spectrometry (MS)-liquid chromatography

(LC) is depicted. Subsequent to metabolite extraction, identification, and quantification, most studies apply multivariate statistical methods to the

metabolome data to identify the top discriminant metabolites. These can be further combined into metabolite panels to increase discriminative

power (i.e. sensitivity and specificity) in Alzheimer’s disease prediction and progression (Liang et al., 2015, 2016; Huan et al., 2018). Significant

discriminative power is commonly tested with the receiver operating characteristic curve analysis (AUC values). Discriminant metabolite panels

are then validated in independent samples. Following discriminant metabolite(s) discovery, researchers conduct pathway and network analyses,

which provide crucial mechanistic insights into the sequences of processes leading to the heterogeneous phenotypes of neurodegeneration.

Pathway analysies focus on identifying sequences of processes that lead to the presence of a discriminant metabolite. Network analyses examine

how discriminant metabolites are connected to each other within Alzheimer’s disease and related dementias. (B) The three main metabolism

pathways (namely, amino acid, lipid and nucleic acid) that 90 Alzheimer’s disease-associated metabolites in our review (n = 11 publications,

Supplementary Table 2) were found to belong. The text colour indicates the biofluid metabolome each metabolite was identified in: red = serum

or plasma, purple = saliva, black = CSF. A larger font size indicates that the metabolite was identified in more than one study (Supplementary

Table 3) The maximum number of studies a metabolite was detected in our review was four. aPresence in plasma or serum and saliva. bPresence in

plasma or serum and CSF. AD = Alzheimer’s disease; CN = cognitively normal.
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(specifically cholesterol and sphingolipids transport) was

also found to be abnormal in both plasma and CSF from

patients with Alzheimer’s disease dementia (Trushina et al.,

2013). In serum, metabolism of amino acids dominated the

top pathways altered in patients with Alzheimer’s disease

dementia in one study (González-Domı́nguez et al., 2015),

a finding in line with plasma metabolome data (de Leeuw

et al., 2017). A second study in serum reported a three-

metabolite panel predictive of progression from MCI to

Alzheimer’s disease dementia (within 27 � 18 months),

with major contribution from upregulated 2,4-dihydroxy-

butanoic acid, a metabolite potentially overproduced

during hypoperfusion-related hypoxia (Orešič et al.,

2011). Upregulation of the pentose phosphate pathway in

progressors further supported the involvement of secondary

hypoxia in Alzheimer’s disease pathogenesis. More glucose

is metabolized via the pentose phosphate pathway in the

brain under hypoxic conditions.

Summary

Overall, metabolite panels, and metabolomics pathway and

network analyses provide the following insights: (i) discrim-

inant Alzheimer’s disease-associated metabolites may be

narrowly or broadly interconnected (Wilkins and

Trushina, 2017); (ii) metabolomes of different biofluids

provide convergent and biofluid-related mechanistic in-

sights into Alzheimer’s disease pathology (Trushina et al.,

2013); (iii) genotype-associated (e.g. APOE status) differ-

ences in preclinical and clinical groups suggest different

routes to Alzheimer’s disease (de Leeuw et al., 2017); and

(iv) neurodegenerative disease subtypes can be character-

ized by metabolomics analyses (de Leeuw et al., 2017).

Genomics-derived polygenic
risk scores

Polygenic risk score approach

Constructed of multiple single nucleotide polymorphisms

(SNPs) that implicate one or more biological mechanisms,

PRSs (Fig. 3) are better at discriminating Alzheimer’s dis-

ease from cognitively normal than single-gene analysis

(Escott-Price et al., 2017b; Torkamani et al., 2018). We

reviewed 11 Alzheimer’s disease PRS studies

(Supplementary Tables 4 and 5), the majority of which

comprised genome-wide association studies (GWAS)-de-

tected SNPs. To identify genetic risk beyond that of

APOE alone, several studies assessed PRS with (APOE-

PRS) and without (non-APOE-PRS) APOE. Desikan

et al. (2017) found that an APOE-PRS associated with

age-at-onset of Alzheimer’s disease symptoms, decreased

amyloid-b and increased tau in CSF, and increased atrophy,

tau, and amyloid-b load in brain. APOE-PRS also asso-

ciated with plasma inflammatory markers in Alzheimer’s

disease patients (Morgan et al., 2017). An APOE-PRS

including a rare TREM2 (triggering receptor expressed on

myeloid cells 2) variant discriminated Alzheimer’s disease

dementia and cognitively normal, with increasing scores

associating with decreasing age at onset, and CSF amyl-

oid-b42 (Sleegers et al., 2015). Discriminative power of

APOE-PRS was found to improve with diagnostic accur-

acy, as demonstrated using a pathologically confirmed

Alzheimer’s disease cohort (Escott-Price et al., 2017a). In

four separate studies, a non-APOE-PRS was reported to

discriminate between Alzheimer’s disease dementia and

cognitively normal (Xiao et al., 2015), as well as associate

with MCI (Adams et al., 2015), increased risk of

Alzheimer’s disease dementia (Adams et al., 2015;

Chouraki et al., 2016; Tosto et al., 2017), and earlier

Alzheimer’s disease onset (Tosto et al., 2017). Inclusion

of APOE either resulted in a modest increase in discrim-

inative power (Xiao et al., 2015), stronger clinical or bio-

marker associations (Adams et al., 2015; Chouraki et al.,

2016), or had no additional effect (Tosto et al., 2017). In

another non-APOE-PRS study in Alzheimer’s disease pa-

tients, PRS scores correlated negatively with CSF amyloid-

b42 levels, and positively with temporal cortex amyloid-b
pathology, and �-secretase activity (Martiskainen et al.,

2015). Naj et al. (2014) found that although APOE con-

tributed to 3.7% of age at onset variability in Alzheimer’s

disease dementia patients, adding a non-APOE-PRS ac-

counted for an additional 2.2%. Overall, Alzheimer’s dis-

ease heritability has a large polygenic contribution beyond

APOE, which makes PRS approaches pivotal for

Alzheimer’s disease risk prediction (Escott-Price et al.,

2015).

Mechanism-based interaction and
network approaches

Alzheimer’s disease risk genes can be clustered into func-

tional/mechanistic pathways (Fig. 3D), and the informa-

tion gained used to improve Alzheimer’s disease

discrimination and/or risk prediction (Gaiteri et al.,

2016; Hu et al., 2017). We reviewed six mechanism-

based Alzheimer’s disease studies (Supplementary Table

5). Functional variants of Alzheimer’s disease GWAS-sig-

nificant SNPs (e.g. CELF1 or CUGBP Elav-like family

member 1) was reported to associate with human brain

expression quantitative trait loci, and preferentially ex-

pressed in specific cell types (e.g. microglia) (Karch

et al., 2016). Rosenthal et al. (2014) highlighted the po-

tential regulatory functions of non-coding Alzheimer’s dis-

ease GWAS SNPs. Protein-protein interaction network

analyses highlighted that Alzheimer’s disease risk genes,

whose protein products interact physically, may be

under positive evolutionary selection (e.g. PICALM or

phosphatidylinositol binding clathrin assembly protein,

BIN1 or bridging integrator 1, CD2AP or CD2 associated

protein, EPHA1 or EPH receptor A1) (Raj et al., 2012).

1322 | BRAIN 2020: 143; 1315–1331 A. Badhwar et al.



Figure 3 Polygenic risk scores. High-throughput genotyping technologies have revolutionized studies in diseases with complex genetics by

enabling detection of common genetic variants with low effect sizes, and rarer variants with relatively higher effect sizes (A). In Alzheimer’s

disease, the prevalent late-onset variant is genetically complex and demonstrates high heritability (up to 80%) (Gatz et al., 2006), whereas the

early-onset familial variant is deterministically driven by single gene mutation(s) in PSEN1 (presenilin 1), PSEN2 (presenilin 2) or APP (amyloid

precursor protein) (Guerreiro et al., 2013). The genetics of late-onset Alzheimer’s disease has been predominantly investigated using GWAS.

Designed to rapidly scan for statistical links between a set of known SNPs and a phenotype of interest, GWAS can identify common variants with

minor allele frequency 45% (Torkamani et al., 2018) (A). Up to 24 key Alzheimer’s disease-risk genes have been identified using GWAS
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Ebbert et al. (2014) reported that while an APOE-PRS did

not improve discrimination of Alzheimer’s disease from

cognitively normal over APOE, a model allowing for epi-

static interactions between SNPs increased discriminative

power. Patel et al. (2016) applied a stratified false discov-

ery rate approach, used to increase GWAS power by ad-

justing significance levels to the amount of overall signal

present in data, to identify gene networks and provide

links with structural MRI phenotypes: e.g. linking genes

involved in transport [e.g. SLC4A10 or (solute carrier

family 4 member 10), KCNH7 (potassium voltage-gated

channel subfamily H member 7)] with hippocampal

volume. Huang et al. (2018) integrated Alzheimer’s dis-

ease GWAS genes with human brain-specific gene network

using machine learning to identify additional Alzheimer’s

disease-risk genes.

Summary

In summary, PRSs may contribute substantially to account-

ing for the genetic variability that distinguishes Alzheimer’s

disease from MCI and cognitively normal groups. They

may also be used to probe genetic underpinnings of

Alzheimer’s disease subtypes as well as related and dispar-

ate NDDs. Thus far, research reporting PRSs in relation to

conversion rates of cognitively normal or MCI to

Alzheimer’s disease dementia have been mixed (Adams

et al., 2015; Lacour et al., 2017), however, early PRS pre-

diction of cognitive trajectories and clinical outcomes have

also been reported (Desikan et al., 2017; Sapkota and

Dixon, 2018).

Discussion

Complementarity of omics
biomarkers

Individuals clinically diagnosed with an NDD of ageing

(e.g. Alzheimer’s disease) exhibit varying loads of neurode-

generative markers (e.g. amyloid-b, tau, �-synuclein, brain

atrophy, vascular abnormalities) (Beach et al., 2012;

Robinson et al., 2018). Single-domain omics biomarkers

can, to an extent, characterize this heterogeneity in vivo.

Some data-driven brain atrophy subtypes parallel estab-

lished clinical diagnoses. For example, the posterior atro-

phy subtype is evocative of the posterior cortical atrophy

Alzheimer’s disease variant, and the language atrophy sub-

type of the logopenic progressive aphasia variant

(Ossenkoppele et al., 2015). An active area of research is

to determine to what degree the ‘bottom-up’, fully auto-

mated and data-driven subtypes match with established

‘top-down’ clinical assessments, which usually start with

cognitive symptoms and then incorporate specific neuroi-

maging characteristics, such as left temporoparietal atrophy

in logopenic progressive aphasia (Ossenkoppele et al.,

2015). The fact that reviewed studies included participants

with typical late-onset Alzheimer’s disease dementia, and

not atypical variants such as posterior cortical atrophy,

suggest that specific brain atrophy phenotypes comprise a

spectrum of involvement that may overlap a clinical label,

but not associate uniquely with one. It is unclear how func-

tional connectivity subtypes tie in with atrophy subtypes,

although they both associate with clinical diagnoses and

Figure 3 Continued

(Supplementary Table 4). The major limitation (and strength) of GWAS is the data-driven, hypothesis-free approach in which multiple genes are

identified, though the majority of significant SNPs are (i) located in non-coding or gene-rich areas of the genome making it difficult to identify

which gene is being modified by the SNP; and (ii) in high linkage disequilibrium with many SNPs making it difficult to identify which functional

variant is responsible for modifying Alzheimer’s disease risk (Karch et al., 2016). Identification of rarer Alzheimer’s disease-associated SNPs (minor

allele frequency40.5% and55%), that often escape detection with GWAS, is being enabled by next-generation genome sequencing (NGS)

technologies, such as whole-exome sequencing and targeted resequencing of disease-associated genes (Bras et al., 2012; Masellis et al., 2013)

(Supplementary Table 4). NGS technologies provide transcriptome-wide coverage without requiring any a priori knowledge of SNPs (A). To date,

Alzheimer’s disease prediction using individual, high-throughput genotyping technologies identified, risk genes have been predominantly non-

significant, with the exception of APOE, which accounts for up to 30% of the genetic risk (Daw et al., 2000). Therefore, the search for risk genes

beyond APOE now include PRS (also referred to as genetic risk scores, risk indexes or scales) approaches (B). A PRS is a calculation (e.g. weighted

sum) based on the number of risk alleles carried by an individual, where the risk alleles and their weights are defined by GWAS-detected loci and

their measured effects (Torkamani et al., 2018). In the most common scenario, only SNPs reaching conventional GWAS significance (P 5 5 �

10–8) are included (C). A threshold lower than the genome-wide statistical significance (e.g. P = 10–5) can also be used to improve or estimate

total predictability (Torkamani et al., 2018) (C). SNPs representing multiple hits among Alzheimer’s disease risk genes from one or more major

mechanistic pathways can also be included into a PRS (C). Displayed are six main mechanistic clusters, each populated by genetic variants thought

to represent the cluster (D). Genetic variants have been placed within the cluster according to population frequency (horizontal axis) and level of

estimated risk (vertical axis). For example, an amyloid-b/APP metabolism cluster is made up of rare ADAM10 (a disintegrin and metalloproteinase

domain-containing protein 10) and common APOE4 + higher risk genes, and rare PLD3 (phospholipase D family member 3) and common PICALM

(phosphatidylinositol binding clathrin assembly protein) lower risk genes. Some genes are involved with multiple mechanisms as can be seen for

PICALM’s involvement in nervous function, basic cellular processes, and amyloid-b/APP metabolism. As implied in the figure, when creating PRS, it

may be very useful to select genes within mechanistic groups, and select groups depending on the purpose of the research. In sum, PRS reflects a

large number of SNPs and a complex set of biological mechanisms related to Alzheimer’s disease pathogenesis, and can improve the precision of

early Alzheimer’s disease risk or diagnosis (Desikan et al., 2017; Escott-Price et al., 2017b; Morgan et al., 2017).
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biomarkers and risk factors of Alzheimer’s disease (Zhang

et al., 2016; Orban et al., 2017b). Although the propaga-

tion of functional dysconnectivity parallels the Braak sta-

ging of Alzheimer’s disease, the mix of connectivity

increases and decreases observed in patients may reflect

transient compensatory mechanisms as well as neurodegen-

eration (Badhwar et al., 2017).

To date, we are unaware of studies that have associated

data-driven Alzheimer’s disease brain subtypes with PRS

and/or metabolite panels. However, brain subtypes could

be targeted and validated with data-driven metabolomics

analyses, with genomics analyses likely contributing preci-

sion information to these complementary omics

approaches. Our review strongly supports such coordinated

multiomics approaches. For example, an Alzheimer’s dis-

ease PRS composed of genes linked to lipid metabolism

and inflammatory response may associate with panels com-

posed of metabolites involved in corresponding pathways.

One could further speculate whether the resulting inflam-

mation may cause the diffuse atrophy subtype, and trigger

specific functional compensatory mechanisms. Testing these

hypotheses will require a cohort that is both deeply pheno-

typed and captures the entire spectrum of age-related

dementias.

Complementarity of analytical
approaches

There is potential complementary in the information that

can be gathered across different analytical approaches, even

within a single omics modality.

Different flavours of subtyping methods were used in the

imaging papers we reviewed. Some variants, e.g. hierarch-

ical agglomerative clustering using Ward’s clustering link-

age (Noh et al., 2014; Hwang et al., 2016; Tam et al.,

2019) and Louvain clustering (Park et al., 2017), are just

different algorithms that produce similar types of cluster

representations. These algorithms may still differ by their

quantitative performance, but this is hard to establish in the

absence of ground truth, in a purely data-driven analysis. A

more qualitative difference in some techniques is the use of

continuous (rather than discrete) subtypes, with multiple

subtype factors contributing to explain the brain map of

any particular individual, such as Bayesian latent factor

analysis (Zhang et al., 2016). Zhang et al. argued that

capturing interindividual variations as a continuous spec-

trum is important, and that there are no clearly separated,

discrete biological clusters. We note that even using trad-

itional, discrete, clustering techniques, it is possible to com-

pute continuous indices of similarity between a subtype

map and a given individual, and some groups that applied

discrete cluster analyses actually performed statistical ana-

lyses using such continuous proximity measures (Tam

et al., 2019). Another important analytical variation is to

use clinical labels to build discriminant subtypes between

clinical cohorts, such as CHIMERA clustering (Dong et al.,

2016, 2017). Such an approach will by construction gen-

erate subtypes that associate more strongly with clinical

variables than unsupervised subtypes based solely on the

similarity of brain maps across all subjects, including con-

trols. It can be noted, however, that some studies apply a

second stage analysis to combine multiple unsupervised

subtype map into a single multivariate signature with

high clinical predictive value (Tam et al., 2019). So the

distinction between unsupervised versus supervised subtype

generation may not be as fundamental as it superficially

appears.

Regarding metabolomics studies, five of six of the studies

in the section ‘Metabolite panels’ implemented an orthog-

onal projection to latent structures-discriminant analysis

(OPLS-DA) (Supplementary Table 2). This technique

shares similarities with some of the subtyping approaches

used in imaging. First, OPLS-DA generates continuous

loadings for each factor across subjects, which means that

metabolomic data from a particular individual are a com-

bination of multiple latent variables, rather than being

associated with one discrete subtype. Second, this technique

uses the clinical labels (typically three clinical groups, cog-

nitively normal, MCI and Alzheimer’s disease dementia) in

its decomposition, attempting to separate clinically relevant

factors from (orthogonal) sources of within-group variance.

Metabolomic studies typically proceed by further selecting

a small panel of metabolites and assess its predictive power,

and this panel can be further linked to larger metabolomic

pathways, parallel to network analysis in genetics (refer to

the ‘Metabolomics pathways and networks’ section).

Emerging analytics in the metabolomic field are thus

mixing ideas applied separately in the imaging connec-

tomics and genomics (discussed below) sections of our

review.

Regarding the genomics section, the majority of the stu-

dies reviewed used PRS derived from omics-based GWAS

using both data-driven and hypothesis-driven approaches

(Supplementary Tables 4 and 5). These PRSs can be con-

structed in several ways: (i) all significant SNPs identified

by GWAS; (ii) all nominally associated variants based on a

particular significance threshold; (iii) combinations of

mechanism-related SNPs; and (iv) a variety of interaction

analyses. Identifying Alzheimer’s disease-associated markers

(i.e. genotype-phenotype models) has been an important

first step, but, like any single omics approach, GWAS ana-

lyses do not directly consider the multigenic and multifac-

torial mechanisms underlying Alzheimer’s disease. Other

limitations are low effect size of risk variants and the pos-

sible heterogeneity of disease risk variants across popula-

tions, with the implication that some rare risk alleles may

be under-identified. There is also a need to investigate gene-

gene or gene-environment interactions further (Ertekin-

Taner, 2011; Bras et al., 2012). Notably, recent machine

learning technologies are moving towards analyses of mul-

tiple genes, multiple phenotypes, and interactions between

them (Gaiteri et al., 2016). Genetic interaction models in-

clude epistasis (synergistic or dys-synergistic gene-gene
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interactions), edgetic (genetic variations of protein-protein

interactions), and directed network analysis such as bio-

logically constrained multiscale models that provide infor-

mation about the genetic variants associated with

molecular networks and brain networks. Six studies

testing network or multiscale models were reviewed

(Supplementary Table 5).

Reproducibility of subtypes, panels
and polygenic risk score

An important methodological consideration is the reprodu-

cibility of subtypes, panels and PRSs. A rigorous evaluation

of reproducibility would consist of a series of experiments

deriving these subtypes, panels and PRSs in either two in-

dependent group samples, or the same sample with differ-

ent methods. We are not aware of studies conducting such

systematic reproducibility experiments. Within the scope of

this review, we could only qualitatively comment on the

convergence across studies, but it was not possible for us

to quantify this convergence (in part because of the limited

number of studies) or to identify the factors that influence

reproducibility, such as methodological variability, vari-

ations due to small sample size, or biological heterogeneity

across different recruitment strategies. As these multivariate

approaches get more mature and possibly get translated to

clinical practice, such systematic reproducibility analyses

will be an important area of future work.

Validity of predictive power

Another critical methodological consideration in this review

is validation of the predictive value of a biomarker. In the

machine learning community, the best practice is to esti-

mate the parameters of a predictive model on a training

set, and then evaluate the performance of the trained

model on data that were not touched during training,

called the test set. This principle should in theory guarantee

an unbiased estimate of model performance, yet in practice

many caveats exist and call for cautious interpretation of

some published results. A model with many degrees of free-

dom can achieve very high accuracy on any training set,

but this performance will not generalize to the test set, a

phenomenon called overfitting. For a given model complex-

ity, it is however easier to over-fit a small sample size than

a large one. If a research group does try many models on

the test set and only reports results for the best model, this

also leads to overfitting. A recent review of functional MRI

biomarkers demonstrated a strong trend across many brain

disorders (including Alzheimer’s disease), where studies

with small sample size tend to report markedly higher ac-

curacy scores than studies with large sample sizes (Fig. 4 in

Varoquaux, 2018). This strongly suggests that over-fitting

in small samples is pervasive in the neuroimaging literature.

However, this is not particular to neuroimaging: some of

the metabolomics paper reviewed lacked out of sample val-

idation (Wang et al., 2014; Liang et al., 2015) and reported

very high area under the curve (AUC) (40.99), while

papers implementing out of sample cross-validation re-

ported more modest effect sizes (Figueira et al., 2016). It

is also in general true that accuracy estimates with small

sample sizes (n 5 100) have a very wide confidence inter-

val, which means that prediction scores reported in studies

with a small sample size should be interpreted with caution

as the true performance may be very different from the

values reported (Fig. 1 in Varoquaux, 2018). Both neuroi-

maging subtypes and metabolomics panels are relatively

young, emerging technologies, and some papers reviewed

have a relatively small sample size per clinical group, e.g.

�50 (Wang et al., 2014; Figueira et al., 2016). Genomics,

by contrast, is a much more mature field, and some studies

reviewed tested predictive powers across very large samples

(Desikan et al., 2017).

Another important consideration is that many types of

generalization and test datasets can be implemented, with

radically different interpretations. One can test generaliza-

tion on a different group of subjects, but with data col-

lected using similar methods to the training set and at the

same location. This is an important validation step, but

remains only a proof-of-concept. Only by testing data col-

lected at different institutions as well as different locations

throughout the world, and possibly different data acquisi-

tion protocols, can the true predictive performance ex-

pected in a ‘real world’ clinical setting be assessed.

Almost none of the imaging or metabolomic studies imple-

mented such large-scale generalization experiments.

A roadmap for parsing heterogeneity
in neurodegeneration

A data-driven characterization of heterogeneity across the

NDDs of ageing will require cohorts representative of the

spectrum of neurodegeneration.

The cohort assembled by the Canadian Consortium on

Neurodegeneration in Aging (CCNA, http://ccna-ccnv.ca/)

provides a new opportunity to study the full spectrum of

age-related dementia. By 2020, the cohort will include

2310 individuals (aged 50–90) featuring the following cog-

nitive conditions: Alzheimer’s disease, vascular, Lewy body,

Parkinson’s, frontotemporal, and mixed aetiology demen-

tias, as well as subjective cognitive impairment, MCI, vas-

cular MCI, and cognitively normal (Fig. 4, COMPASS-ND

column). The cohort composition ensures that age-related

dementias are more or less equally represented, even for

less prevalent dementia types (e.g. frontotemporal demen-

tia). Participants will be deeply phenotyped with extensive

clinical, neuropsychological, neuroimaging, biospecimen,

and neuropathological assessments.

In Fig. 4 we present a roadmap for a multiomics ap-

proach to heterogeneity in NDD. We begin with a hetero-

geneous clinical cohort design (Fig. 4, COMPASS-ND

column) that enables the discovery of subgroups sharing

a common signature across multiple omics domains

1326 | BRAIN 2020: 143; 1315–1331 A. Badhwar et al.



Figure 4 Proposed roadmap to discovering multiomics Alzheimer’s disease biomarkers. COMPASS-ND: The COMPASS-ND

cohort is composed of individuals with various types of dementia or cognitive complaints, as well as healthy, cognitively normal individuals. Omics

data: Performing dimension reduction for omics data. Featured as examples are some of the results of our review of the Alzheimer’s disease

literature as presented in the paper. Machine learning, Multiomics biotypes and Prediction: These panels demonstrate how signatures of

neurodegeneration derived from the integration of multiomics data using machine learning techniques will better identify individuals on an

Alzheimer’s disease spectrum trajectory. While our proposed roadmap addresses multiomics biomarkers for Alzheimer’s disease, a similar

approach can be used for other neurodegenerative diseases of ageing. AD = Alzheimer’s disease; CN = cognitively normal; DMN = default mode

network; FTD = frontotemporal dementia; G = genomics features; I = imaging features; LBD = Lewy body disease; LIM = limbic network; M =

metabolic features; Mixed = mixed aetiology dementia; O = demographic features; SAL = salience network; SCI = subjective cognitive

impairment; VCI = vascular cognitive impairment.
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(biotypes) that are highly predictive of the clinical status

and evolution of individual patients. Multiomics biotypes

will be complemented by other important variables such as

sex, presence of amyloid-b and tau deposits, and vascular

abnormalities. Machine learning tools will be applied to

identify an optimal combination of different biotypes and

explanatory variables that either discriminate different clin-

ical cohorts, or are predictive of future progression of spe-

cific symptoms (Fig. 4, Machine learning column).

We have three complementary lines of reasoning for

including a heterogeneous clinical cohort design (i.e. diverse

dementia aetiologies) in our proposed roadmap. First, if we

were to just consider the data-driven multiomics biotypes

generated using an Alzheimer’s disease population (Fig. 4,

Multiomics biotypes column), having access to diverse de-

mentia aetiologies will allow us to evaluate the uniqueness

of each biotype to Alzheimer’s disease. Second, as hetero-

geneity is a feature of Alzheimer’s disease as well as other

NDDs of ageing (Robinson et al., 2018), our proposed

roadmap can be applied to generate multiomics biotypes

in other dementia aetiologies. Similar to our review, this

will initially require identification of disease-specific indica-

tors from single omic modalities (Fig. 4, Omics data

column). We envision that for any given NDD of ageing,

multiomics biotypes identified will range from pure (but

rare) disease-specific biotypes, to biotypes featuring mixed

pathologies. Having access to multiomics biotypes from the

spectrum of NDDs of ageing will allow better delineation

of biotypes, namely, those that are unique to a specific

NDD of ageing, and those that show overlap with other

NDDs of ageing. Third, recent work has shown that by

training machine learning models on large and heteroge-

neous data it is possible to generalize better to new studies

relying on different methodologies and run on slightly dif-

ferent populations (Abraham et al., 2017; Orban et al.,

2017a). Such generalizability is critical for a successful

translation in clinical practice.

Towards highly predictive multiomics
signatures for prognosis

Because of the emergent nature of the three omics tech-

niques (neuroimaging-based subtypes, metabolite panels,

and polygenic risk score), our review was largely composed

of proof-of-concept cross-sectional comparisons of cogni-

tively normal older adults with individuals classified with

prodromal or diagnosed Alzheimer’s disease, as opposed to

the preclinical population. However, the publication of the

A/T/N criteria (Jack et al., 2016), along with increasing

availability of CSF and PET biomarker data (e.g. amyloid,

tau), and longitudinal cohorts provide fertile grounds for

additional (and much warranted) research addressing het-

erogeneity in preclinical and/or at-risk cohorts. Specifically,

longitudinal trajectory studies with data-driven neuroima-

ging subtypes differentially transitioning from cognitively

normal to preclinical to prodromal or dementia stages of

Alzheimer’s disease are needed. In these designs, metabolo-

mics and genomics (PRS or APOE) would probably serve

as a variable to add precision to a biomarkers-based

prognosis.

Current biomarkers of Alzheimer’s disease dementia dem-

onstrate limited predictive power for prognosis in the pro-

dromal phase (Rathore et al., 2017). The best models

include a combination of cognitive, structural MRI, fluor-

odeoxyglucose-PET, and/or amyloid-PET measures

(Rathore et al., 2017). A substantial proportion of patients

identified as progressors, even by the best model, will

remain stable over time. Multiomics signatures will hope-

fully improve the precision of early prognosis. They will

also capture a range of information, ranging from brain

networks targeted by the disease, metabolic abnormalities

in specific pathways, and distinct genetic backgrounds. The

multiomics signature may thus also help elucidate the spe-

cific pathophysiological pathways involved, and help refine

the A/T/N model. Overall, multiomics biomarkers have the

potential to reshape clinical diagnosis, and define new

‘bottom-up’ cohorts based on markers of underlying

pathologies to design and evaluate drugs. Based on this

focused but substantial review, we recommend that add-

itional multiomics analyses be performed.
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