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Abstract

Determining metabolomic differences among samples of different phenotypes is a

critical component of metabolomics research. With the rapid advances in analytical

tools such as ultrahigh‐resolution chromatography and mass spectrometry, an in-

creasing number of metabolites can now be profiled with high quantification ac-

curacy. The increased detectability and accuracy raise the level of stringiness

required to reduce or control any experimental artifacts that can interfere with the

measurement of phenotype‐related metabolome changes. One of the artifacts is the

batch effect that can be caused by multiple sources. In this review, we discuss the

origins of batch effects, approaches to detect interbatch variations, and methods to

correct unwanted data variability due to batch effects. We recognize that mini-

mizing batch effects is currently an active research area, yet a very challenging task

from both experimental and data processing perspectives. Thus, we try to be critical

in describing the performance of a reported method with the hope of stimulating

further studies for improving existing methods or developing new methods.
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1 | INTRODUCTION

Metabolomics, focusing on the comprehensive and sys-
tematic analysis of small molecules in a biological system,
has become a rapidly growing field in many application
areas, including biomarker discovery (Xia et al., 2013), drug
development (Kell, 2006), and precision medicine (Wishart,
2016). Quantitative metabolomics uses analytical techni-
ques, such as nuclear magnetic resonance (NMR) spectro-
scopy and mass spectrometry (MS), to perform absolute or
relative quantification of metabolites in comparative sam-
ples with the main objective of investigating the metabolic
changes associated with phenotypes (Y. Wu & Li, 2016).

Because of the need to use a large sample size for
achieving the desired statistical power of comparative
analysis (Button et al., 2013), metabolomics often in-
volves the analysis of hundreds or thousands of biological
samples, for which the analytical process itself may take
a long time. In addition, samples may be collected in
multiple batches from the same or different laboratories
(e.g., longitudinal studies and multicenter validation
studies). Although continuous analysis of all samples on
a dedicated platform is preferable, many studies have
been split into multiple batches due to limitations in
instrumental availability or the timeline of sample col-
lection (Thonusin et al., 2017). Here, a batch is defined as
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a set of samples processed and analyzed by the same
experimental procedure (i.e., same operator and instru-
ment) in an uninterrupted manner (Wehrens et al.,
2016). Moreover, because of the high workload, some
large‐scale studies are inevitably conducted by multiple
operators or even several collaborating laboratories (Goh
et al., 2017).

To process the data of multiple batches, some re-
searchers have successfully adopted a meta‐analysis ap-
proach (Goveia et al., 2016; Patti et al., 2012), which
analyzes the datasets separately and then finds the
common significant metabolites in a second‐order com-
parison. However, in a meta‐analysis, the statistical
power of each subset is limited by its relatively small
sample size (Goh et al., 2017). As increasing sample size
can generally improve the statistical performance, mer-
ging data of multiple batches remains highly desirable for
in‐depth metabolomics. For example, Salerno et al.
(2017) reported that doubling the sample size by com-
bining two batches increased the statistical power of their
analysis, with area‐under‐the‐curve values of the
receiver‐operating characteristic curves improved.

A major hurdle to merging multiple batches is the
existence of batch effects, which refer to the situation
that the quantitative results of different batches sig-
nificantly differ due to irrelevant factors (Leek et al.,
2010). In addition to biological variations associated
with the phenotypes being studied and other biological
factors, there are also analytical variations arising from
the experimental process or instrumental analysis.
Analyzed independently, each batch may have its un-
ique analytical variations. When multiple batches are
directly merged without proper treatments, the overall
analytical variability, a major confounding factor for
revealing the metabolic changes of interest, may sig-
nificantly increase, thereby hindering the statistical
performance. For instance, several studies have shown
cases that interbatch variations were more significant
than interphenotype variations, dominating in the sta-
tistical analysis and preventing the true metabolic
changes to be highlighted (Boccard et al., 2019; Deng
et al., 2019; Zhao et al., 2016). Moreover, when the
batch‐group design is unbalanced (i.e., sample numbers
of a specific phenotype are not evenly distributed among
batches), batch‐related variations can be confused with
interphenotype differences, and the corresponding
findings may become misleading (Baggerly et al., 2004).
Therefore, unidentified interbatch variability is a sub-
stantial challenge to the validity and reproducibility of
quantitative metabolomics discoveries.

In recent years, with rapid advances in sample pre-
paration methods and analytical techniques for accurate
quantification of an increasing number of metabolites,

metabolomics has become a popular high‐throughput
tool for studying large numbers of samples (Dunn et al.,
2015; Fuhrer & Zamboni, 2015; Soininen et al., 2015). To
generate any meaningful results from large‐scale meta-
bolomics, the impacts of interbatch variations must be
minimized by experimental or data‐processing strategies.
In the literature, several experimental methods, such as
the use of internal metabolite standards (Bijlsma et al.,
2006; Fei et al., 2014), have been proposed to correct
batch effects in metabolomics. In addition, genomics and
proteomics, which were established earlier than meta-
bolomics, have also been facing the problem of batch
effects, and researchers have developed various compu-
tational approaches to remove or minimize batch effects
during data processing (Gregori et al., 2012; Haghverdi
et al., 2018; Karpievitch et al., 2009; Tung et al., 2017). As
all the omics data have the common form of measuring
multiple variables across a large number of samples,
some of these computational corrections can potentially
be applied to metabolomics. For example, the combating
batch effects (ComBat) function, which was originally
developed for microarray data, has also been used to
adjust metabolomics data (Reisetter et al., 2017; Sánchez‐
Illana et al., 2018).

This review covers the topic of minimizing interbatch
variations in metabolomics. The origins of batch effects
are discussed first, followed by a summary of frequently
used methods for identifying and evaluating interbatch
variations. Next, existing strategies for batch effect cor-
rection are presented. Some techniques require addi-
tional experimental steps, whereas others directly adjust
the results using univariate or multivariate algorithms.
Finally, as there is no unified standard for dealing with
batch effects in metabolomics, we summarize the ad-
vantages and limitations of each strategy and emphasize
that the user may choose a combination of methods that
are most suitable to the data being studied or most
convenient for interstudy comparisons (Tables 1 and 2).

In the literature, there are publications covering the
topic of ensuring the overall quality of clinical metabo-
lomics (Long et al., 2020) or using computational tech-
niques to improve the quality of metabolomics data (Q.
Yang et al., 2020). Still, this review focuses explicitly on
the roles of experimental precautions and computational
adjustments in dealing with batch effects. With experi-
ence drawn from years of metabolomics work, we aim to
provide a more comprehensive and in‐depth review of
the topic, including detailed introductions to various
methods, and to propose a standardized protocol to
overcome batch effects in quantitative metabolomics.

We note that as the selectivity, sensitivity and meta-
bolite identification ability of untargeted analyses have
been greatly improved, there is an increasing number of
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attempts to merge targeted and untargeted metabolomics
(Cajka & Fiehn, 2015; Y. Li et al., 2012). Despite the fact
that in targeted metabolomics, normalization based on
isotope‐labeled internal standards (IS), which are com-
monly available in targeted studies, is the gold standard
for irrelevant variability removal (Boysen et al., 2018),
many of the correction methods for untargeted metabo-
lomics can also be used for targeted analyses when re-
quired. Hereinafter, we will not discuss targeted and
untargeted approaches separately.

We also note that, though metabolome analysis may
include the detection of some lipids, lipidome analysis
often involves the use of a different workflow, including
dedicated lipid extraction protocols and optimized se-
paration conditions for lipids. As the extent of batch ef-
fects is dependent on the analytical techniques and
methods used, it would not be too surprising that batch
effects on lipidome analysis might be very different from
those for metabolome analysis. This review focuses on
batch effects on metabolome analysis. Some of the
methods reviewed in this paper might be applicable for
overcoming batch effects in lipidome analysis; however,
more studies on batch effects exclusively focused on li-
pidome analysis are still needed.

2 | ORIGIN OF INTERBATCH
VARIATIONS

Figure 1 illustrates the general experimental workflow of
quantitative metabolomics (Y. Wu & Li, 2016). Briefly,
biological samples are collected from the subjects with
proper pretreatments, such as filtration of urine, clotting
of blood, or metabolic quenching of cell cultures. After
collection, samples are temporarily stored under specific
conditions (e.g., in a –80°C freezer) until the analytical
work begins. The sample processing step further treats
the biological samples by extracting the metabolites and
making the final samples suitable for instrumental ana-
lysis. Then the raw data reflecting metabolite con-
centrations are acquired by analytical instruments,
whose performance determines the accuracy, precision,
and metabolome coverage of the measurement.

NMR and MS are the two leading instruments in
quantitative metabolomics. With nondestructive mea-
surement over a wide dynamic range, NMR‐based me-
tabolomics generates highly reproducible quantification
results (Song et al., 2011). However, the relatively poor
sensitivity has limited its application in untargeted me-
tabolomics, which favors high metabolome coverage to
reveal more biological information (Issaq et al., 2009;
Zhang et al., 2012). On the contrary, MS‐based analysis
has been coupled with chromatography or otherT
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separation techniques to achieve high sensitivity and
metabolome coverage (Lu et al., 2008). The most widely
used MS‐based platforms are gas chromatography‐mass
spectrometry (GC‐MS) (Jonsson et al., 2004; Kanani
et al., 2008) and liquid chromatography‐mass spectro-
metry (LC‐MS) (Theodoridis et al., 2008; B. Zhou
et al., 2012).

After data acquisition, the raw data are aligned to
form a matrix containing concentrations of metabolites
(i.e., variables) across the samples (i.e., observations). At
last, statistical analysis reveals the metabolic differences
between the phenotypes of interest. Additionally, in
some metabolomics studies, a preacquisition normal-
ization step is added to balance the total amount of

metabolites in each sample before instrumental analysis
(Y. Wu & Li, 2012, 2016), whereas other studies imple-
ment a postacquisition treatment in data processing to
computationally normalize the distribution of metabolite
concentrations in each sample (Peralbo‐Molina et al.,
2015; Veselkov et al., 2011). Both normalizations can
help reduce the analyte‐irrelevant variations, and their
roles in minimizing interbatch variations will be
discussed later.

During each step throughout the workflow of
quantitative metabolomics, analytical variations could
be introduced. In Figure 2, we summarize the major
sources of unwanted variations in quantitative meta-
bolomics, as well as the typical strategies to minimize

TABLE 2 Performance comparison of five strategies for batch effect correction

Criteria

Method

Sample‐data‐
driven Internal standards (ISs) Quality control

Chemical
isotope labeling

Remove batch effects induced during
sample collection and storage

Depends Partially (best for
metabolites with ISs)

No No

Cover all metabolites detected in the
samples

Yes Partially No Yes

Reference for each metabolite No Yes Yes Yes

Extra time or cost No high if many ISs are used Acceptable Acceptable

FIGURE 1 Workflow for quantitative metabolomics (experimental part) (Adapted with permission from Y. Wu &amp; Li, 2016)
[Color figure can be viewed at wileyonlinelibrary.com]
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unwanted variations. First, a well‐balanced study design
can minimize the unwanted variations rising from ir-
relevant biological factors. Second, during the pre-
analytical stage, collection, initial preparation, and
storage of samples may induce unwanted variations.
Specifically, for each of these operations in a large‐scale
study, batch‐to‐batch variations due to differences in
operators, collection containers, reagents, equipment,
and others may be introduced. Last, the analytical
process can be a major source of technical variations.
Similar to that in the preanalytical stage, the factors
leading to analyte‐irrelevant variability include, but not
limited to, operators conducting the experiment, re-
agents and containers for processing the samples and
running the instruments, conditions of sample handling
during the sample workup, storage of processed samples
and standards, and the stability of analytical instru-
ments. In some cases, using different parameters to
process the raw spectra might be normal for multibatch
instrumental analysis, but there is also a potential risk
of increasing interbatch variations. To minimize and
control the technical variations during the preanalytical
and analytical stages, there is a need for developing and
implementing a stringent analytical workflow with
standard operating procedures (SOPs) in each step.
Overall, after the data collection is done, data normal-
ization and correction become the major strategy to
overcome any unwanted variations.

It has been noticed that operator bias may cause extra
variations in experimental research (Griffiths &
Rosenfeld, 1954; Saenz et al., 1999). For example, when
samples are transferred by manual pipetting, there is a
risk of operator‐wise variability potentially due to dif-
ferences in pipetting techniques, as revealed in the study
by Pandya et al. (2010). When different batches of sam-
ples are processed by different operators independently,
the cumulative differences in sample volumes may be-
come nonnegligible.

Moreover, chemical reagents are often added to
samples during sample collection or preparation. A
commonly encountered example is that plasma samples
are collected into tubes coated with anticoagulants. It has
been reported that different types or concentrations of
anticoagulants can affect the results of metabolic profil-
ing (Barri & Dragsted, 2013; Chen et al., 2017). In a large‐
scale metabolomics study of blood samples, if different
types or batches of collection tubes are used, there could
be interbatch variability arising from matrix effects. This
situation is likely to happen when samples are collected
in multiple hospitals or from multiple blood banks to
increase the sample size. Similarly, phosphate‐buffered
saline (PBS), which is widely used as the diluent or
washing solution in tissue and cell metabolomics
(Gonzalez‐Riano et al., 2016; Ser et al., 2015), also causes
concentration‐dependent matrix effects to MS detection
(Han & Li, 2015). When the use of PBS is not strictly

FIGURE 2 Graphical representation of
sources of variations in quantitative
metabolomics and typical strategies to
minimize the unwanted variations [Color
figure can be viewed at
wileyonlinelibrary.com]
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standardized, samples processed in different batches may
experience batch‐wise biases.

Sample storage condition, although sometimes over-
looked, is another important contributor to interbatch
variations, as conversion or degradation of metabolites
may slowly happen (Álvarez‐Sánchez et al., 2010; Teahan
et al., 2006). Samples stored under nonidentical conditions
(e.g., different temperatures or different time lengths) may
have systematic differences in metabolome profile (Maher
et al., 2007; H. Zhou et al., 2006). Furthermore, freeze‐
thaw cycles (FTCs) have an even stronger influence on
sample integrity (Hirayama et al., 2015; Sykes, 2007).
Unless all batches have experienced the same number of
FTCs, even small changes in metabolite concentrations
from each cycle can lead to a considerable number of
false‐positive discoveries (Chen et al., 2020a).

A major part of interbatch variations comes from the
instrumental analysis step. In MS detection, sensitivity
drift over time and across batches is a significant source
of signal variability (Fernández‐Albert et al., 2014; Shen
et al., 2016). As metabolite quantification relies on the
intensities of the MS peaks, such a drift will lead to
varying measurement results even though the true values
are the same in different batches.

Also, when chromatography is coupled to MS, both
GC‐MS and LC‐MS face the problems of sample carry‐
over and contamination building up, which may differ
across batches (Burton et al., 2008). It is interesting to
note that batch variations and correction methods used
are likely different for GC‐MS and LC‐MS. For example,
in a study examining various methods for correcting GC‐
MS batch‐effect on mouse serum analysis, it was found
that the use of total‐signal‐intensity for signal normal-
ization is better than the isotope‐standard method (Zaitsu
et al., 2019). In LC‐MS, the isotope‐standard method
would perform better in general as it corrects for matrix
effect. In GC‐MS, the matrix effect on metabolome ana-
lysis is less than that in LC‐MS. It is not surprising that
the isotope‐standard method did not effectively correct
the batch effect.

Possibly because NMR‐based metabolomics requires
minimal pretreatment of biological samples (Markley
et al., 2017), which means it is less susceptible to ana-
lytical variations, in the literature, there are much fewer
discussions about batch effects in NMR‐based metabo-
lomics than that of MS‐based metabolomics. We note
that if the instrumental variability is significant in NMR
measurement and thus corrections are needed, many of
the computational approaches that remove batch effects
from MS data should also work for NMR data, as the
formats of results are similar (i.e., concentrations of a set
of metabolites across multiple samples). Hence, this re-
view will focus on MS‐based metabolomics hereinafter.

The instrumental changes mentioned above, espe-
cially the intensity drift, can also happen gradually
within the data acquisition of a single batch of samples,
causing within‐batch variations. When caused by the
same technical factors, interbatch and within‐batch ef-
fects may have no clear boundaries in between. The
major difference can be that within‐batch variations of-
ten follow a more continuous and monotonic pattern
than interbatch differences (Deng et al., 2019). Within‐
batch variations may also affect the statistical analysis,
and it is often mixed with interbatch differences.
Although this review aims to summarize reported
approaches for minimizing interbatch effects, some of
the methods should also be applicable to perform within‐
batch corrections.

3 | DETECTION AND
EVALUATION OF BATCH EFFECTS

In general, a three‐step workflow is used to handle un-
wanted variations: (1) identifying the unwanted varia-
tions, (2) removing or accommodating the unwanted
variations in statistical analysis, and (3) evaluating the
performance of batch effect removal (Livera et al., 2015).
To handle batch effects, the first step is particularly im-
portant, because some batch effect removal methods
should only be conducted when necessary (Sánchez‐
Illana et al., 2018), and choosing the best correction
approach depends on the sources and patterns of the
interbatch differences.

Many existing batch effect correction approaches are
developed to generate a batch‐effect‐free dataset by ex-
cluding affected metabolites or adjusting the measured
values of each metabolite (Salerno et al., 2017; Wang
et al., 2012). As these adjustments extensively modify the
original data, batch effect removal may lead to un-
predictable outcomes to the results (e.g., underestimated
or overestimated biological differences) and should be
conducted with caution (Nygaard et al., 2016). Particu-
larly, when there is no significant batch effect that would
interfere with the biological variations, batch effect re-
moval, which takes extra effort and time, becomes un-
necessary. Hence, instead of applying batch effect
removal to all datasets indistinguishably, we should first
assess the relative severity of batch effects compared to
the strength of biological effects.

In some studies where isotope‐labeled internal stan-
dards are used, batch‐wise variations can be straightfor-
wardly visualized by plotting the intensities of internal
standards against the injection order or batch number
(Kuligowski et al., 2014). However, for more complicated
untargeted metabolomic profiling, a more in‐depth
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analysis of the dataset is required. Here, we review some
more commonly used computational strategies for de-
tecting and evaluating batch effects. For most of them,
information on the injection order or batch label is
needed.

3.1 | Principal component
analysis (PCA)

PCA is an unbiased dimensionality reduction method
that has been widely used in metabolomics (Worley &
Powers, 2013). It finds the principal components (PCs)
through a linear combination of a set of variables, with
the resulting PCs ranked by the percentage of total var-
iance that each can explain. The PCA score plot projects
all the samples onto the surface of PC 1 and PC 2, pro-
viding a simple and graphical overview of the data
without any extra assumptions.

Considering that the consequences of batch effects
are often complicated and even mixed with within‐batch
variations, we prepared a simulated dataset based on real
serum metabolomics data, to demonstrate and explain
the batch effects in a simple way. Figure 3A shows the
score plot of this simulated dataset without batch effects,
including samples of phenotype A (in orange), samples of
phenotype B (in blue), and quality control (QC) samples
(in green). Because QCs are experimental replicates of
the same sample, the average distance between them
represents the analytical variability. Phenotype A is
clearly separated from phenotype B, indicating that there
are significant metabolic differences between the two
phenotypes. The distance between the two groups
represents the interphenotype variability, which we are
most interested in.

Figure 3B shows the analysis of the same set of
samples, but during the second half of instrumental
analysis, the measurement experienced a 20% intensity
drop. Strong batch effects make the between‐batch
variability predominant on the score plot, as the two
batches are clearly separated on PC 1. In this example,
the PCA score plot directly displays the clustering of
batches to prove the existence of batch effects.

We note that in real‐world data, the newly emerging
nonlinear regression models may better fit the compli-
cated changing patterns of batch effects mixed from
multiple sources. However, unlike searching for bio-
markers, we will not care too much about the details of
interbatch variations when their contribution to the
overall variation is minor. As an easy‐to‐use un-
supervised analysis, PCA can best serve the needs of
evaluating the severity of batch effects over biological
variations without any bias.

3.2 | Guided PCA

Usually, the PCA approach only examines the first few
PCs. When the interbatch variability is not one of the
largest sources of variance, PCA is not able to identify the
batch effects (Benito et al., 2004). Although the batch
effects are relatively insignificant when compared with
the overall variance, it may still be strong enough to in-
terfere with the interphenotype variability, especially
when the latter is not very large (Chen et al., 2020a).
Guide PCA is designed as an extension of the traditional
PCA to deal with this situation (Reese et al., 2013).

Briefly, batch information is included in the PCA
modeling so that the resulting top PCs will prefer ex-
plaining interbatch variability. Afterward, a δ value,
which is the ratio of PC 1 from guided PCA to that from
PCA, is calculated to evaluate the severity of batch var-
iations. As a numeric value between 0 and 1, the larger δ
is, the stronger the batch effects are. A permutation test is
performed to determine the statistical significance of δ,
and an empirical p‐value is given to the users. For the
data set in Figure 3, when there is no significant batch
effect, δ is only 0.244 (p< 0.718), but when batch effects
occur, δ dramatically increases to 0.900 (p< 0.001), in-
dicating the existence of batch effects.

3.3 | Hierarchical clustering
analysis (HCA)

HCA partitions the samples into homogenous groups
according to their similarity (Johnson, 1967), and visua-
lizes the hierarchy of samples by a dendrogram. If batch
effects exist, samples will tend to cluster by batch label
(Leek et al., 2010). For observing batch effects, HCA is
less quantitative and more susceptible to other variances
than the other methods.

3.4 | QC‐based analysis

The use of QC samples is a powerful means of assuring
high‐quality data and has become a routine practice in
metabolomics (Godzien et al., 2015). In most cases, QCs
are prepared by either spiking metabolites with known
concentrations into blank matrix samples or pooling
aliquots from some or all of the individual samples
(Sangster et al., 2006). During GC‐MS or LC‐MS analysis,
QCs are injected and analyzed at intermittent points
throughout the entire sequence of running samples.
Theoretically, all QCs should have the same measured
concentration of every single metabolite, as the true
concentration and sample matrix are identical among
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FIGURE 3 (A) Principal component
analysis (PCA) score plot showing the
separation between two phenotype groups in a
data set without significant batch effects. The δ
value from guided PCA is also provided. (B)
PCA score plot and guided PCA result showing
the separation between the same biological
samples in (A) when strong batch effects exist.
(C) Histogram showing the distributions of
metabolite quantification relative standard
deviations (RSDs) among quality controls (QCs)
(green) and samples (blue) for the batch‐effect‐
free data set in (A). (D) Histogram showing the
distributions of metabolite quantification RSDs
among QCs (green) and samples (blue) for the
batch‐effect‐affected data set in (B). The data set
is simulated by adding a simple and clear batch
effect pattern to real data of serum
metabolomics [Color figure can be viewed at
wileyonlinelibrary.com]
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QCs. The differences among QCs, which are usually
minimal, reflect the analytical variability induced during
sample processing or data acquisition (Burton et al.,
2008). When interbatch variability becomes considerable,
the inter‐QC variations also increase.

The relative standard deviation (RSD) of each me-
tabolite among the QCs is a commonly used indicator of
inter‐QC variations. For absolute quantification, the
United States Food and Drug Administration has issued
a Bioanalytical Method Validation Guidance for In-
dustry, requiring the RSD among replicates in bioana-
lytical methods to be below 15%. When the analyte's
concentration is at the limit of quantification, the
guidelines allow variations at 20%, instead of 15%. In
untargeted metabolomics analysis, as it is challenging to
achieve complete absolute quantification of all meta-
bolites, there are no regulatory guidelines governing
accuracy and precision. A typically accepted RSD
threshold in biomarker discovery studies is 30% (Wang
et al., 2012; Zhao et al., 2016). Because untargeted
analysis detects many metabolites at the signals of above
the detection limit and below the quantification limit,
relaxing RSD values to 30% seems to be reasonable.
Moreover, in untargeted metabolomics, it is a common
practice to exclude a metabolite when the metabolite's
RSD in QCs is larger than a specific threshold (e.g., 20%)
(Vinaixa et al., 2012). During this process, batch effects
can lead to a problem that many informative metabo-
lites, which could become biomarker candidates, are
considered to be quantitatively unreliable and then
wrongly removed.

Figures 3C and 3D are the distributions of RSD values
of all metabolites in the two datasets corresponding to
Figures 3A and 3B. The green histogram represents the
QCs and the blue histogram is for the samples. With no
batch effects, the median RSD among QCs is 7%, showing
excellent analytical repeatability. The median RSD of
samples is 28%, which means biological variability is
clearly greater than analytical variability. When there are
batch effects, the median QC RSD significantly increases
to 14%, suggesting much larger analytical variations.
With the median RSD of samples only slightly increased
to 31%, the analytical variability becomes more sig-
nificant compared with biological variability.

Because large inter‐QC differences do not directly
indicate the existence of batch effects, we may first
group the QCs into batches and calculate the median
RSD for each batch, then examine if the median RSD
remarkably goes up when the batches are combined
(Kirwan et al., 2013). Also, as RSD is susceptible to
outliers, sometimes the ratio of interquartile range to
the median is used as a more outlier‐resistant alter-
native (Myers et al., 2012).

With known batch labels, analysis of variance
(ANOVA) can also be used to test if the mean value of a
QC metabolite in one batch is statistically different from
those in other batches (Gregori et al., 2012). ANOVA tells
how many QC metabolites are potentially affected by
interbatch variations and generates a list of them. The
main limitation of QC‐based assessment is that a rela-
tively large number of QCs are required in each batch to
accurately reflect the batch effects. Although QCs are
commonly used in metabolomics, for some small‐scale
studies, a user may choose to run no more than five QCs
in each batch.

4 | CORRECTION OF BATCH
EFFECTS

When the existence of strong batch effects is confirmed,
actions are required to avoid confounding effects in data
analysis. Various strategies have been proposed to re-
move or minimize batch effects. Some of them adjust
each metabolite independently, whereas others imple-
ment multivariate procedures. Although an adequate
number of ISs or QCs can facilitate many advanced
correction strategies, methods solely relying on the
sample data may also generate satisfying performance.
Here, we summarize these experimental or computa-
tional strategies that can be used to improve the data
quality for quantitative metabolomics. (Table 1). Table 2
highlights the performance comparison of these
methods.

4.1 | Sample data‐based normalization

Sample data‐based normalization is the most extensively
used data correction strategy in metabolomics. As the
data‐driven methods do not require any additional ex-
perimental elements, such as ISs or QCs, they help with
lowering the cost and complexity of the overall study. In
particular, when ISs and QCs are unavailable or in lim-
ited numbers, these methods are indispensable. They
are also complementary with the IS‐ or QC‐based
approaches.

Postacquisition sample normalization has been a
routine practice in metabolomics. Although the main
purpose is often to offset the differences in total meta-
bolite concentration among samples (Y. Wu & Li, 2016),
many statistical normalizations can also correct the batch
effects, especially those caused by sample pipetting or
extraction.

The simplest approach is the median normalization,
which adjusts the data to make all samples have the same
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median concentration (represented by MS peak intensity
or peak area), which is normalized to 1 in most cases
(Atwal et al., 2015). Similarly, Unit‐norm scales the data
of each sample to make the sum of all metabolite con-
centrations equal to 1 (Scholz et al., 2004). Probabilistic
quotient normalization, on the contrary, assumes that
the detected intensities of most metabolites are affected
by dilution only, and normalizes samples to a reference
sample by probable quotients (Di Guida et al., 2016).
Similarly, quantile normalization is another sample‐wise
adjustment making all the samples have the same dis-
tribution (Brodsky et al., 2010). The statistical normal-
izations lie in the assumption that the distributions of
metabolite intensities are similar among samples from
multiple batches (Deng et al., 2019). Although this as-
sumption is not always true, these simple normalizations
can still be used as an additional correction during data
processing.

Matrix factorization methods, on the contrary, de-
compose the data matrix into mutually orthogonal sub-
matrices associated with different effects and then
remove the batch‐dependent components. Two‐way
ANOVA has been a popular choice to decompose the
data matrix to submatrices according to phenotypes and
batch labels so that the interphenotype variability and
interbatch variability are separated (Boccard et al., 2019).
Similarly, the EigenMS tool first preserves the
phenotype‐related variations using ANOVA, and then
applies singular value decomposition to identify and re-
move batch effects from the residual (Karpievitch et al.,
2014). These methods may face difficulties in handling
data with missing values or missing samples, and a large
sample size is preferred for optimal performance.

To deal with the limitations of matrix factorization
and lower the risk of removing real biological changes,
ComBat (Johnson et al., 2007), which is widely used in
genomics, has also been implemented to adjust metabo-
lomics data. ComBat corrects the data based on an em-
pirical Bayesian framework, and it is good at adjusting
batches with small sample sizes. Although no extra ex-
periments are required, a well‐balanced batch‐group de-
sign is crucial for both ANOVA and Combat. Nygaard
et al. (2016) have thoroughly discussed this issue and
pointed out that using ComBat or ANOVA to adjust an
unbalanced dataset may deflate or inflate the differences
between phenotypes.

WaveICA, a more recently developed method, adopts
wavelet transform and independent component analysis
(ICA) to decompose the data matrix (Deng et al., 2019).
In a well‐randomized analysis sequence, the switching
between phenotypes through the analysis time is very
frequent, making it possible to use time‐scale frequency
to isolate the slower‐changing interbatch differences

from interphenotype variations. Figure 4 shows the in-
tensity of a selected metabolite against injection order
and batch in the original data and in those processed
with four different batch effect correction methods. Al-
though ComBat effectively adjusted the interbatch dif-
ferences, it is not designed to handle the within‐batch
drift. Despite the requirement of an ideal block design
during the LC‐MS analysis, Deng et al. (2019) demon-
strated that WaveICA had better correction performance
than ComBat (Table 1).

4.2 | IS‐based methods

Isotope‐labeled ISs, which are widely used in targeted
analysis, can effectively cope with analytical variations
during the analysis. Spiked into the samples right after
sample collection, ISs and analytes experience the same
sample handling and instrumental analysis steps. After
data acquisition, the concentrations of each metabolite
are normalized by taking the ratio of its intensity to that
of the corresponding IS.

In the work of Bromke et al. (2015), a 13C‐labeled IS
was used to normalize all the detected metabolites.
Theoretically, when the MS peak intensity of a metabo-
lite is enhanced or reduced by batch‐related matrix ef-
fects or instrumental drift, the same effects happen to the
IS. Consequently, the absolute intensities of the meta-
bolite and the IS may vary, but the relative concentration
to the IS remains constant. As the ISs are spiked into the
samples, they experience all following technical varia-
tions together with the analytes, so all unwanted effects
induced after adding the ISs can be monitored and cor-
rected. Unlike the QCs, which cannot gauge the varia-
bility during sample collection, the ISs are added to the
samples at the very beginning of the study. Thus, all
interbatch variations can be captured. Furthermore, the
IS approach has the flexibility of evaluating and nor-
malizing the variations of each experimental step sepa-
rately. In the microbial metabolome analysis platform
proposed by van der Werf et al., ISs were added at each
experimental stage to correct the analytical variations
arising from that stage (van der Werf et al., 2007).

We note that although adding ISs right after sample
collection is the ideal approach to monitor variations
induced during sample handling, it is practically difficult
as biological samples are often collected by health pro-
fessionals rather than researchers. Hence, we believe
spiking in ISs after the first freeze‐thaw cycle, which
would be more achievable, is the second‐best approach
and should be recommended in metabolomics. The
downside of this second‐best strategy is that any un-
wanted variations caused by the first FTC cannot be
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corrected. Studies to understand the FTC effects with a
hope to minimize or eliminate the FTC effects are still
ongoing. On the basis of our current knowledge, if all
samples have experienced only one FTC, the impact of
FTC effects on biomarker discovery will be limited (Chen
et al., 2020a).

Using a single IS is a simple and economical ap-
proach, but it relies on the dubious assumption that all
metabolites would respond to batch‐related interferences
in the same way as the IS does. With the highly diverse
physical and chemical properties of metabolites, this as-
sumption is not very likely to be true. To overcome this
challenge, more studies have included multiple ISs, with
one or several standards representing a class of metabo-
lites (S. Yang et al., 2010; Zukunft et al., 2013). Regard-
less, having multiple ISs is still not a perfect solution.
First, as it cannot be guaranteed that all metabolites in
the same class behave similarly during the analysis, the
number of ISs should be as large as possible. Ideally,
every single metabolite should have its isotope‐labeled IS.
However, an untargeted metabolomics study typically
can detect more than a thousand metabolites, with many
unidentified. Hence, it is not practically possible to have
ISs for all metabolites. For most laboratories, the cost of
acquiring or making even hundreds of isotope‐labeled
standards is beyond the reach (Ejigu et al., 2013). Second,
even if a metabolite has an isotope‐labeled counterpart
being analyzed together in LC‐MS, the two forms do not

encounter the same instrumental variability when they
do not coelute, which is very common for deuterium‐
labeled standards (Stokvis et al., 2005).

To deal with the challenge that representative ISs
cannot perfectly reflect the behaviors of all metabolites,
Sysi‐Aho et al. (2007) developed a computational method
called normalization using optimal selection of multiple
internal standards (NOMIS). For each metabolite, the
changing patterns of multiple ISs are examined and used
together to calculate an optimal normalization factor.
The authors reported that NOMIS outperformed direct
correction using ISs for three metabolites. The limitation
of this strategy is that when the mathematical assump-
tions are violated in a real dataset, some biological var-
iations of interest may also be removed (de Livera et al.,
2012). Redestig et al. (2009) further considered the in-
fluences of analytes on ISs and proposed a cross‐
contribution‐compensating multiple‐standard normal-
ization approach to correct the cross contributions.

More recently, Boysen et al. (2018) developed the
best‐matched internal standard normalization approach.
In this method, QC samples containing a collection of
isotope‐labeled ISs are repeatedly injected into the LC‐
MS system throughout the analysis. When the QC RSD of
a metabolite is larger than 10%, the metabolite is nor-
malized by each IS candidate and the RSDs after nor-
malization are calculated. Finally, the IS generating the
smallest RSD is chosen for the normalization of the

FIGURE 4 Intensity of a selected metabolite changing with injection order and batch, (A) before and after applying (B) WaveICA, (C)
combatting batch effects (ComBat), (D) quality control‐based robust locally estimated scatterplots moothing signal correction (QC‐RLSC),
and (E) independent component analysis (ICA). Red points represent QCs and blue points represent samples (Adapted with permission
from Deng et al., 2019) [Color figure can be viewed at wileyonlinelibrary.com]
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specific metabolite. With a carefully chosen set of ISs,
this strategy may overcome the challenges of IS‐based
normalization. The remaining challenge is that the cor-
rection only works for the metabolites detected in QC
samples.

4.3 | QC‐based correction

With QC samples analyzed intermittently throughout the
instrumental analysis, it becomes easier to monitor the
change of instrumental performance. For example, QCs
can reflect the gradual change of instrument sensitivity,
which is extremely useful for correcting within‐batch
variations. Furthermore, QCs provide a quantitative cri-
terion for assessing the performance of batch effect re-
moval, that is, the QC RSDs should become smaller.

Similar to the statistical normalizations, a simple and
straightforward way of QC‐based batch effect correction
is to build a regression model between the total signal of
each QC and the injection order or batch number (Wang
et al., 2012). Regardless, considering that different me-
tabolites may have different responses to batch effects, a
more popular strategy is to study the QC metabolites
separately. In other words, for each metabolite existing in
QCs, we can find a mathematical pattern describing its
concentration change as a function of injection order or
batch number. Because samples are “bracketed” in be-
tween of QCs, we assume that the changing patterns of
QCs also apply to the samples. When the batch in-
formation of samples is substituted into the model, we
can acquire the predicted batch variations. Finally, the
predicted batch variability is subtracted from the original
data to generate a batch‐effect‐free dataset for statistical
analysis.

In fact, a large variety of regression‐based methods
have been established to correct batch effects. A qualified
QC‐based correction should not only accurately fit the
complex inter‐ and within‐batch variations, but also be
resistant to overfitting. To achieve this goal, although
linear least‐squares (LS)‐regression‐based correction can
significantly improve the quality of data with better
performance than other traditional data‐based normal-
ization methods (Wang et al., 2012; Wehrens et al., 2016),
nonlinear or nonparametric models are more frequently
adopted due to the complexity of batch‐related changing
patterns.

A LOESS (locally estimated scatterplot smoothing)
algorithm, which is also known as moving regression, is
often used for curve smoothing, and the corresponding
correction method is named QC‐based robust LOESS
signal correction (QC‐RLSC) (Dunn et al., 2011). Alter-
natively, cubic smoothing spline algorithms are also

popular choices of curve fitting for batch effect removal,
with the method termed QC‐based robust spline correc-
tion (QC‐RSC) (Brunius et al., 2016; Kirwan et al., 2013).
Thonusin et al. (2017) reported that QC‐RLSC, QC‐RSC,
and a QC‐based LS quadratic regression performed
equally well to correct their dataset.

In addition to curve fitting, various nonparametric
approaches have been developed to fit the interbatch
changes. On the basis of the support vector regression
(SVR), which projects the data to a higher‐dimensional
space and then builds a linear model there, QC‐SVR
correction tools (QC‐SVRC) have been developed
(Kuligowski et al., 2015; Sanchez‐Illana et al., 2018).
Shen et al. (2016) compared QC‐SVRC with QC‐RLSC,
and reported that although both methods significantly
reduced the QC RSDs, the prediction ability of QC‐RLSC
was relatively poorer and there was a high risk of over-
fitting. This observation is consistent with Figure 4 where
the performance of QC‐RLSC was not as good as Wa-
veICA for correcting interbatch or intrabatch variations.
On the contrary, Rong et al. (2020) reported that their
NormAE algorithm, which was built on deep neural
networks, demonstrated stronger correction power than
WaveICA. Furthermore, Luan et al. (2018) processed a
dataset using QC‐RLSC, QC‐SVRC, and a random forest‐
based method (QC‐RFSC), and the results showed that
QC‐RFSC outperformed the other two corrections.

Notably, the correction of batch effects is not limited
to only one method at a time. Rodríguez‐Coira et al.
(2019) implemented a combination of two algorithms,
QC‐SVRC followed by normalizing the shift of QC
median, to achieve the optimal correction performance
for their serum metabolomics data. Furthermore, as we
suggested earlier, a data‐driven correction can be used
together with a QC‐based method to maximize the
performance.

QC‐based methods provide an efficient and low‐cost
way to remove interbatch variations when compared
with IS‐based approaches. As metabolomics studies
usually include running QC samples, using QCs should
not take much extra time and effort. Having plenty of
QCs is crucial for maximizing the performance of the
correction and lowering the risk of overfitting (Rong
et al., 2020). However, injecting too many QCs will sig-
nificantly extend the analysis time, which means more
noticeable instrumental drift is likely to happen
(Kuligowski et al., 2015; Wehrens et al., 2016). Also,
using a pooled sample as QC is highly preferred for these
correction methods to cover all metabolites detected
among the samples, but when the available amount of
each individual sample is limited, it becomes difficult to
make a large amount of QC. At last, as stated previously,
QC‐based normalization cannot cover the interbatch
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differences before QC samples are made (e.g., the varia-
tions during sample collection).

4.4 | Selected QC metabolite (QCM)‐
based correction

QCMs are the metabolites existing in biological samples
but assumed to be unrelated to the phenotypes according
to the known biological background (de Livera et al.,
2012; Livera et al., 2015). The algorithm of the QCM‐
based correction methods assumes that QCMs are not
changing across samples, which means their variations
are all irrelevant. Therefore, QCM‐based correction
identifies not only batch effects but also other sources of
unwanted variations. The limitation of this approach is
that the performance is highly dependent on the selec-
tion of QCMs. In a real‐world metabolomics study where
the target metabolome is not fully understood yet, the
selection of these negative controls may not be very easy
(Salerno et al., 2017).

4.5 | Chemical isotope labeling‐based
correction

As discussed earlier, although QC‐based correction
methods have been greatly enriched and improved,
identifying batch effects in each individual sample is
mainly based on prediction, which is less accurate than a
true experimental reference. Despite high costs and
limited availability of standards, IS‐based strategies have
their irreplaceable advantages. Researchers have spent
lots of effort to expand the availability of ISs. For ex-
ample, using isotope‐enriched substrates, we can culture
a fully isotope‐labeled cell extract, which contains a
complete isotope‐labeled metabolome that can be used as
the reference (Weindl et al., 2015; L. Wu et al., 2005).
However, this approach is not practically possible for
analyzing samples that cannot be cultured in isotope‐
enriched media, such as biofluids, human tissues, and
many other types of samples.

Alternatively, a reference sample, such as a pooled
sample, can be isotope‐labeled after sample collection.
The chemical isotope labeling (CIL) method (Guo & Li,
2009), which is mainly focusing on LC‐MS applications,
realizes relative quantification through a chemical deri-
vatization reaction with isotopic labeling reagents. More
specifically, a tag group is attached to every single me-
tabolite in an individual sample, and in the meanwhile,
the isotopic counterpart of the labeling group (e.g., a 13C‐
labeled reagent) is attached to the same metabolite in a
reference sample. After the labeled samples are mixed,

the metabolite from the reference sample serves as the
internal standard.

The CIL method is very different from the IS method,
although they share the same keyword, “isotope.” The
major advantage of CIL LC‐MS is the significant expan-
sion of the metabolome coverage through improved LC
separation and enhanced MS detection by using ration-
ally designed reagents for labeling metabolites. At the
same time, every single metabolite, detected in the QCs
or not, has its isotope‐labeled IS to overcome analytical
variations. After the individual sample is mixed with the
heavy‐isotope‐labeled reference sample, the pair of la-
beled metabolites will experience the same analytical
variations, and thus the relative quantification will not be
affected anymore. Figure 5 shows an example of a dif-
ferentially chemical‐isotope‐labeled metabolite detected
in two batches (some of the runs in batch 1 had en-
countered a small leak in LC) (Chen et al., 2020b). The
absolute intensities of peaks shown in the mass spectra
were changed, whereas the peak ratio remained to be
similar. Unlike the computational batch correction stra-
tegies suffering from artificial biases or overfitting, CIL
LC‐MS provides a complete set of ISs so that the quality
of adjustment is guaranteed.

Traditionally, the reference sample in CIL LC‐MS is
prepared by pooling all the individual samples of a study.
However, when the sample collection and analysis are
done in batches, it may be inconvenient to generate the
pooled sample from individual samples in all batches. In
some cases, the available amount of each individual
sample is very limited and thus taking an aliquot from
each sample for pooling may not be feasible. To facilitate
the application of CIL LC‐MS to large‐scale metabo-
lomics, Peng et al. (2014) proposed a universal metabo-
lome standard (UMS) method. Available in large
amounts, the UMS is a pooled sample of a specific
sample type. The UMS can serve as the reference sample
for multiple batches and even multiple studies. Using the
UMS‐based CIL LC‐MS approach, the authors analyzed
multiple batches of urine samples and achieved excellent
reproducibility.

It should be noted that the CIL LC‐MS platform alone
can only offset analytical variability induced after the
labeled individual samples are mixed with the labeled
reference sample. Therefore, a stringent experimental
workflow is needed to avoid batch effects during sample
handling. CIL‐based preacquisition normalization
methods have been developed to deal with systematic
variations during sample collection and treatment (e.g.,
dilution effects and pipetting errors) (Y. Wu & Li, 2012).
Still, the user should make sure that there are no strong
matrices or contaminations introduced to some of the
batches (Han & Li, 2015).
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5 | EVALUATION OF BATCH
EFFECT REMOVAL

The last step of the batch effect handling workflow is to
evaluate the performance of batch effect removal. Theore-
tically, all the batch effect detection methods discussed in
the previous section can be applied for evaluation. For ex-
ample, PCA plots before and after correction are often
compared to visually demonstrate the improvement of
clustering (Deng et al., 2019; Rong et al., 2020). However,
visually improved clustering may not be quantitative en-
ough to assess the difference in an objective manner
(Čuklina et al., 2020). To quantitatively evaluate the PCA
result, Goodpaster and Kennedy (2011) proposed a stick plot
showing the Euclidean distance between each sample point
and the centroid of the phenotype group that it belongs to.

Figures 6A and 6B show this type of stick plots for the
datasets without and with batch effects, as discussed in
Figure 3. In these plots, the number below the group
label is the mean distance between samples in that group
and its centroid, and the horizontal line represents the
distance between the group's centroid to that of the
baseline group (in this case, the QCs). Additionally, each

vertical stick, centered at the horizontal line, reflects the
distance between an individual sample and the centroid
of its phenotype group. In this way, we can quantitatively
observe that batch effects can remarkably increase the
within‐group variance, compared to the intergroup var-
iance. Especially when QCs are not available, PCA has
been proved to be a robust method for evaluating the
effectiveness of batch effect removal, and as discussed
previously, guided PCA can serve as another powerful
tool to quantitatively measure the PCA results.

If there is a large number of QCs available throughout
the study, QC‐based information is often examined to
check the elimination of batch effects. Specifically, in
PCA analysis, the mean distance (Shaham et al., 2017) or
median distance (Shen et al., 2016) between QCs is fre-
quently used to evaluate analytical variability. As shown
in Figures 6A and 6B, compared to the dataset with
significant batch effects, whose QC mean distance is
13.69, the batch‐effect‐free dataset has a much better
clustering of QCs with a mean distance of 1.81. Similarly,
the Silhouette plot, which comprehensively assesses the
clustering in a quantitative manner, is also a useful tool
to evaluate the correction (Sánchez‐Illana et al., 2018).

(A)

(B)

(C)

(D)

FIGURE 5 Expanded mass spectra of
dansyl labeled proline detected from (A) a
quality control (QC) rat plasma sample in Batch
1, (B) a different QC sample in Batch 1, (C) a QC
sample in Batch 2, and (D) a different QC
sample in Batch 2. The QC sample was prepared
by mixing an equal mole amount of the 12C‐
labeled and 13C‐labeled pooled samples and
injected into liquid chromatography‐mass
spectrometry after every 10 sample runs. A total
of 468 rat plasma samples were analyzed over a
period of 15 days in three batches (Adapted with
permission from Chen et al. 2020b) [Color figure
can be viewed at wileyonlinelibrary.com]
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Additionally, as discussed in the batch effect detec-
tion section, we may group the QCs by batches and ex-
amine the RSDs. Figures 6C and 6D are the box plots
showing the distributions of QC RSDs in the two batches,
as well as among all QCs, without and with batch effects,

respectively. In a dataset with strong batch effects, as
shown in Figure 6D, the median of QC RSDs among all
QCs is significantly larger than that of a single batch.
However, in Figure 6C, the two batches have similar QC
RSD distributions, and there is no noticeable change
when we examine them together.

A remaining problem with the QC‐based evaluation
is that when overfitting happens, the correction may
work well with QCs but perform poorly on other sam-
ples. To overcome this problem, Fan et al. (2019) pro-
posed a fivefold cross‐validated QC RSD (cvRSD)
approach by randomly splitting QCs into training sets
and testing sets.

In addition to assessing the removal of batch effects,
some studies also mentioned the importance of evaluat-
ing the retention of biological information by examining
the number of detected metabolite biomarkers and their
discriminative powers (B. Li et al., 2017; Rong et al.,
2020). Although this is an important aspect, there are
practical difficulties for biomarker discovery studies
where the true biomarkers are unknown and false posi-
tives may come from both batch effects and batch effect
removal. Overall, PCA‐based analyses, together with
trends demonstrated by QCs, are sufficient to evaluate
batch effect removal in most cases.

6 | MINIMIZING BATCH
EFFECTS IN LARGE ‐SCALE
METABOLOMICS

With more advanced analytical platforms and the need to
study subtle metabolic perturbations, the typically re-
quired sample size of metabolomics studies has been
increasing. Generally, the sample size used for a clinical
study is dependent on the nature of the study and the
complexity of the system. For example, the sample size
requirement for discovering biomarkers of dementia
would be very different from that for brain tumors using
human tissues (e.g., brain tissues). Referring to large‐
scale metabolomics, we mean the sample size is suffi-
ciently large for discovering and validating biomarkers
for a clinical study. In real‐world applications, the sample
size is far larger than those used in the initial discovery
projects, requiring analysis in batches and proper data
processing. As discussed earlier, the discovery and vali-
dation of biomarkers involving multiple sites can be ad-
vantageous over a single site analysis. Moreover, with
quantitative metabolome profiling becoming a mature
analytical platform, data sharing among the metabo-
lomics community is viewed as the next important step
to accelerate the development of the field (Haug et al.,
2012; Sud et al., 2015).

FIGURE 6 (A) Stick plot showing the intergroup and
within‐group distances for the principal component analysis (PCA)
plot in Figure 3A. (B) Stick plot showing the intergroup and within‐
group distances for the PCA plot in Figure 3B. (C) Box plot showing
the distribution of quality control‐relative standard deviations (QC
RSDs) in Batches 1 and 2 for the batch‐effect‐free data set in
Figure 3A. (D) Box plot showing the distribution of QC RSDs in
Batches 1 and 2 for the batch‐effect‐affected data set in Figure 3B
[Color figure can be viewed at wileyonlinelibrary.com]
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Ideally, the performance of a robust biomarker for an
application such as diagnosis of a disease will not be
significantly affected by batch effects, including varia-
tions in instruments and operators. However, small dif-
ferences between data from batches are unavoidable in
such large‐scale projects. In the past, wrong conclusions
from studies misled by analytical variations raised ser-
ious concerns about the application of omics techniques
in clinical testing (Ransohoff, 2005).

Nonetheless, the discovery of a biomarker also de-
pends on the extent of changes caused by the phenotype.
If the changes are much greater than those from un-
wanted factors, one can always detect some significant
changes when comparing the groups with and without
this phenotype. Hence, when we analyze the result at
each site independently and then merge the biomarker
lists, which is also known as the meta‐analysis, only the
biomarker candidates with the most significant changes
would be consistently recognized. Any metabolites with
changes that can be influenced significantly by unwanted
variations are not likely to be commonly detected at
different sites. Therefore, with the use of proper data
analysis workflow, the biomarkers commonly found in
multisite studies would be more reliable.

Still, to discover a moderately robust biomarker or to
monitor a specific metabolite of interest in a large‐scale
study, we need to minimize the extent of unwanted
variations including batch effects. In addition to meta‐
analysis, further standardization of metabolomics proto-
cols will make it possible to merge data of multiple stu-
dies on the same biological effects, which may lead to
more profound findings. Therefore, minimizing the im-
pacts of unwanted variations, including batch effects, is
crucial for the future applications of quantitative
metabolomics.

Given the various potential sources of batch effects, it
is obvious that a careful study design, along with stan-
dardization of the experimental workflow, will help
minimize interbatch variations. Despite that study design
is a broad topic for revealing the true biological meanings
effectively, here we emphasize planning for the con-
sequences when samples are split into batches. For ex-
ample, if samples are collected from blood banks, they
should come from the same batch to avoid incon-
sistencies in sample collection practice (Long et al.,
2020). Also, as mentioned in the previous section, all
biological factors that could potentially be evaluated in
the following analysis should be balanced among the
batches. Furthermore, if operators at different sites fol-
low the same stringent experimental protocol to handle
samples and to operate instruments, the systematic dif-
ferences will be minimized. Researchers have also pro-
moted automated systems for sample handling to reduce

unwanted experimental variations to the minimum
(Long et al., 2020).

Instrumental drift over time and across batches may
be more challenging to control. We can set up SOPs to
lower the chance of the unexpected drift. For example,
before the analysis begins, we can prepare sufficient vo-
lumes of the LC mobile phases, clean the LC and ioni-
zation source, and condition the computer (Rodríguez‐
Coira et al., 2019). Moreover, we recommend frequently
monitoring the intensity of the ISs or QCs throughout the
analysis so that the instrumental variability can be no-
ticed in a timely manner. Even if considerable interbatch
variations still exist after taking these precautions, the ISs
or QCs can very well capture the pattern of instrumental
variations and therefore, the computational correction
methods are available for reducing the batch effects.

It should be noted that the data‐based normalizations
and QC‐based regression methods have limitations,
especially on the real‐world data with complicated
compositions and not well‐balanced experimental de-
signs. As Nygaard et al. (2016) suggested, rather than
using these corrections to generate a batch‐effect‐free
data set, it is better to take batch effects into account in
statistical analysis. For example, Salerno et al. (2017)
have applied an RRmix (random main effect and random
compound‐specific error variance with a mixture model)
method to achieve simultaneous main effect detection
and batch effect removal. RRmix excludes batch effects
without prior knowledge about the nature of batch ef-
fects and detects the significant metabolites with im-
proved sensitivity and specificity.

Despite the limitations and potential risks of batch
effect removal, there is still a pressing need for having
batch‐effect‐free data, as it becomes easier to incorporate
other novel data analysis techniques, such as machine
learning (Čuklina et al., 2020). Regardless, careful study
design and stringent experimental protocols are the most
important measures to minimize batch effects. Ideally, if
the batch effects are well controlled such that they are
much less significant than the main phenotype effects,
there is no need for the correction. Furthermore, careful
consideration of the batch effects during the experi-
mental protocol design can at least simplify the sources
and patterns of batch effects, which is highly preferred by
the correction methods when batch effect removal is
unavoidable.

The CIL LC‐MS method, as an alternative experi-
mental workflow of quantitative metabolomics, has the
advantage of high‐quality batch effect adjustment for all
labeled metabolites. However, this method cannot cope
with interbatch variations arising from sample collection
or CIL reaction. To the best of the current knowledge, we
believe that a combination of CIL and IS is the optimal
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way to deal with the batch effect issue. IS is for con-
trolling batch effects before the CIL labeling, and CIL is
for minimizing batch effects in the following steps. If we
cannot add in the ISs right after sample collection, the
performance of the IS correction will be weakened. Still,
it can monitor the extra FTCs and other sample handling
steps. The limitation of CIL could be that in some field
works where equipment is limited and quick results are
wanted, performing CIL might be impractical or too
costly.

Finally, computational implementation is an im-
portant step for the combination of IS and CIL, as well as
other data‐driven corrections. Fortunately, a number of
open‐source data normalization packages have been de-
veloped, and user‐friendly graphical interfaces are also
emerging (B. Li et al., 2017; Luan et al., 2018). We note
that several MS vendors’ software and data output for-
mats have integrated data correction; however, if the
source codes are not open, it may not be easy to imple-
ment other correction strategies. It would be difficult for
laboratories with no strong IT support to choose the best
option for batch effect correction. We hope, in the future,
as the research community publishes more refined
methods for batch effect correction, the vendors will
adopt these methods in their software package to allow
the usage of more and better options in dealing with
different types of batch effects.

7 | CONCLUDING REMARKS

Minimizing interbatch variations is crucial in quantita-
tive metabolomics that involves the analysis of many
samples that are either collected in different batches or
analyzed in batches or a combination of two. In this re-
view, we discuss the origins and impacts of batch effects
on metabolome analysis. We provide a summary of a
number of batch effect removal methods mainly for MS‐
based metabolomics. Each method of dealing with in-
terbatch variations has its own merits and limitations.
When doing quantitative metabolomics, we should plan
in advance to minimize batch variations. On the basis of
the knowledge of potential sources of batch effects,
multiple experimental steps, such as sample collection,
storage, and thawing, should be carefully controlled.
Analytical variations during sample preparation leading
to instrumental analysis should be minimized. SOPs for
running samples and analyzing the resultant data need to
be strictly followed. Batch variations or batch effects
should be evaluated after metabolome data acquisition
and initial analysis. When the evaluation step reveals
that batch effects are minor, the best strategy is not doing
correction, but treating statistical results with caution. If

batch effect removal is necessary, a combination of two
or more batch removal methods may be used to achieve
optimal and consistent results.

ACKNOWLEDGMENTS
This study was supported by the Natural Sciences and
Engineering Research Council of Canada, Canada Re-
search Chairs, Canada Foundation for Innovation, Gen-
ome Canada, and Alberta Innovates.

CONFLICT OF INTERESTS
The authors declare that there are no conflict of interests.

REFERENCES

Álvarez‐Sánchez B, Priego‐Capote F, De Castro ML. 2010.
Metabolomics analysis I. Selection of biological samples and
practical aspects preceding sample preparation. Trends in
Analytical Chemistry 29:111‐119.

Atwal PS, Donti TR, Cardon AL, Bacino C, Sun Q, Emrick L,
Sutton VR, Elsea SH. 2015. Aromatic L‐amino acid
decarboxylase deficiency diagnosed by clinical metabolomic
profiling of plasma. Molecular Genetics and Metabolism 115:
91‐94.

Baggerly KA, Edmonson SR, Morris JS, Coombes KR. 2004. High‐
resolution serum proteomic patterns for ovarian cancer
detection. Endocrine‐Related Cancer 11:583‐584.

Barri T, Dragsted LO. 2013. UPLC‐ESI‐QTOF/MS and multivariate
data analysis for blood plasma and serum metabolomics: effect
of experimental artefacts and anticoagulant. Analytica
Chimica Acta 768:118‐128.

Benito M, Parker J, Du Q, Wu J, Xiang D, Perou CM, Marron JS.
2004. Adjustment of systematic microarray data biases.
Bioinformatics 20:105‐114.

Bijlsma S, Bobeldijk I, Verheij ER, Ramaker R, Kochhar S,
Macdonald IA, Van Ommen B, Smilde AK. 2006. Large‐scale
human metabolomics studies: a strategy for data (pre‐)
processing and validation. Analytical Chemistry 78:567‐574.

Boccard J, Tonoli D, Strajhar P, Jeanneret F, Odermatt A, Rudaz S.
2019. Removal of batch effects using stratified subsampling of
metabolomic data for in vitro endocrine disruptors screening.
Talanta 195:77‐86.

Boysen AK, Heal KR, Carlson LT, Ingalls AE. 2018. Best‐matched
internal standard normalization in liquid chromatography–mass
spectrometry metabolomics applied to environmental samples.
Analytical Chemistry 90:1363‐1369.

Brodsky L, Moussaieff A, Shahaf N, Aharoni A, Rogachev I. 2010.
Evaluation of peak picking quality in LC‐MS metabolomics
data. Analytical Chemistry 82:9177‐9187.

Bromke MA, Sabir JS, Alfassi FA, Hajarah NH, Kabli SA, Al‐Malki
AL, Ashworth MP, Méret M, Jansen RK, Willmitzer L. 2015.
Metabolomic profiling of 13 diatom cultures and their
adaptation to nitrate‐limited growth conditions. PLOS One
10:e0138965.

Brunius C, Shi L, Landberg R. 2016. Large‐scale untargeted LC‐MS
metabolomics data correction using between‐batch feature
alignment and cluster‐based within‐batch signal intensity drift
correction. Metabolomics 12:173.

18 | HAN AND LI



Burton L, Ivosev G, Tate S, Impey G, Wingate J, Bonner R. 2008.
Instrumental and experimental effects in LC–MS‐based
metabolomics. Journal of Chromatography B 871:227‐235.

Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J,
Robinson ES, Munafò MR. 2013. Power failure: why small
sample size undermines the reliability of neuroscience. Nature
Reviews Neuroscience 14:365‐376.

Cajka T, Fiehn O. 2015. Toward merging untargeted and targeted
methods in mass spectrometry‐based metabolomics and
lipidomics. Analytical chemistry 88:524‐545.

Chen D, Han W, Su X, Li L, Li L. 2017. Overcoming sample matrix
effect in quantitative blood metabolomics using chemical
isotope labeling liquid chromatography‐mass spectrometry.
Analytical Chemistry 89:9424‐9431.

Chen D, Han W, Tao H, Li L, Li L. 2020a. Effects of freeze‐thaw
cycles of blood samples on high‐coverage quantitative
metabolomics. Analytical Chemistry 92:9265‐9272.

Chen D, Zhao S, Han W, Lo E, Su X, Li L, Li L. 2020b. High
tolerance to instrument drifts by differential chemical isotope
labeling LC‐MS: A case study of the effect of LC leak in long‐
term sample runs on quantitative metabolome analysis.
Journal of Mass Spectrometry e4589.

Čuklina J, Pedrioli PG, Aebersold R. 2020. Review of batch effects
prevention, diagnostics, and correction approaches. Mass
spectrometry data analysis in proteomics. Springer. pp.
373‐387.

de Livera AM, Dias DA, de Souza D, Rupasinghe T, Pyke J, Tull D,
Roessner U, McConville M, Speed TP. 2012. Normalizing and
integrating metabolomics data. Analytical Chemistry 84:
10768‐10776.

Deng K, Zhang F, Tan Q, Huang Y, Song W, Rong Z, Zhu Z‐J, Li K,
Li Z. 2019. WaveICA: a novel algorithm to remove batch
effects for large‐scale untargeted metabolomics data based on
wavelet analysis. Analytica Chimica Acta 1061:60‐69.

Di Guida R, Engel J, Allwood JW, Weber RJ, Jones MR, Sommer U,
Viant MR, Dunn WB. 2016. Non‐targeted UHPLC‐MS
metabolomic data processing methods: a comparative
investigation of normalisation, missing value imputation,
transformation and scaling. Metabolomics 12:93.

Dunn WB, Broadhurst D, Begley P, Zelena E, Francis‐McIntyre S,
Anderson N, Brown M, Knowles JD, Halsall A, Haselden JN.
2011. Procedures for large‐scale metabolic profiling of serum
and plasma using gas chromatography and liquid
chromatography coupled to mass spectrometry. Nature
Protocols 6:1060‐1083.

Dunn WB, Lin W, Broadhurst D, Begley P, Brown M, Zelena E,
Vaughan AA, Halsall A, Harding N, Knowles JD. 2015.
Molecular phenotyping of a UK population: defining the
human serum metabolome. Metabolomics 11:9‐26.

Ejigu BA, Valkenborg D, Baggerman G, Vanaerschot M, Witters E,
Dujardin J‐C, Burzykowski T, Berg M. 2013. Evaluation of
normalization methods to pave the way towards large‐scale
LC‐MS‐based metabolomics profiling experiments. Omics:
A Journal of Integrative Biology 17:473‐485.

Fan S, Kind T, Cajka T, Hazen SL, Tang WW, Kaddurah‐Daouk R,
Irvin MR, Arnett DK, Barupal DK, Fiehn O. 2019. Systematic
error removal using random forest for normalizing large‐scale

untargeted lipidomics data. Analytical Chemistry 91:
3590‐3596.

Fei F, Bowdish DM, McCarry BE. 2014. Comprehensive and
simultaneous coverage of lipid and polar metabolites for
endogenous cellular metabolomics using HILIC‐TOF‐MS.
Analytical and Bioanalytical Chemistry 406:3723‐3733.

Fernández‐Albert F, Llorach R, Garcia‐Aloy M, Ziyatdinov A,
Andres‐Lacueva C, Perera A. 2014. Intensity drift removal in
LC/MS metabolomics by common variance compensation.
Bioinformatics 30:2899‐2905.

Fuhrer T, Zamboni N. 2015. High‐throughput discovery
metabolomics. Current Opinion in Biotechnology 31:73‐78.

Godzien J, Alonso‐Herranz V, Barbas C, Armitage EG. 2015.
Controlling the quality of metabolomics data: new strategies
to get the best out of the QC sample. Metabolomics 11:
518‐528.

Goh WWB, Wang W, Wong L. 2017. Why batch effects matter in
omics data, and how to avoid them. Trends in Biotechnology
35:498‐507.

Gonzalez‐Riano C, Garcia A, Barbas C. 2016. Metabolomics studies
in brain tissue: a review. Journal of Pharmaceutical and
Biomedical Analysis 130:141‐168.

Goodpaster AM, Kennedy MA. 2011. Quantification and statistical
significance analysis of group separation in NMR‐based
metabonomics studies. Chemometrics and Intelligent
Laboratory Systems 109:162‐170.

Goveia J, Pircher A, Conradi LC, Kalucka J, Lagani V,
Dewerchin M, Eelen G, DeBerardinis RJ, Wilson ID,
Carmeliet P. 2016. Meta‐analysis of clinical metabolic profiling
studies in cancer: challenges and opportunities. EMBO
Molecular Medicine 8:1134‐1142.

Gregori J, Villarreal L, Méndez O, Sánchez A, Baselga J,
Villanueva J. 2012. Batch effects correction improves the
sensitivity of significance tests in spectral counting‐based
comparative discovery proteomics. Journal of Proteomics 75:
3938‐3951.

Griffiths J, Rosenfeld MA. 1954. Operator variation in experimental
research. The Journal of Geology 62:74‐91.

Guo K, Li L. 2009. Differential 12C‐/13C‐isotope dansylation
labeling and fast liquid chromatography/mass spectrometry
for absolute and relative quantification of the metabolome.
Analytical Chemistry 81:3919‐3932.

Haghverdi L, Lun AT, Morgan MD, Marioni JC. 2018. Batch effects
in single‐cell RNA‐sequencing data are corrected by matching
mutual nearest neighbors. Nature Biotechnology 36:421‐427.

Han W, Li L. 2015. Matrix effect on chemical isotope labeling and
its implication in metabolomic sample preparation for
quantitative metabolomics. Metabolomics 11:1733‐1742.

Haug K, Salek RM, Conesa P, Hastings J, de Matos P, Rijnbeek M,
Mahendraker T, Williams M, Neumann S, Rocca‐Serra P.
2012. MetaboLights—an open‐access general‐purpose
repository for metabolomics studies and associated meta‐
data. Nucleic acids research 41:D781‐D786.

Hirayama A, Sugimoto M, Suzuki A, Hatakeyama Y, Enomoto A,
Harada S, Soga T, Tomita M, Takebayashi T. 2015. Effects of
processing and storage conditions on charged metabolomic
profiles in blood. Electrophoresis 36:2148‐2155.

BATCH EFFECTS IN METABOLOMICS | 19



Issaq HJ, Van QN, Waybright TJ, Muschik GM, Veenstra TD. 2009.
Analytical and statistical approaches to metabolomics
research. Journal of Separation Science 32:2183‐2199.

Johnson SC. 1967. Hierarchical clustering schemes. Psychometrika
32:241‐254.

Johnson WE, Li C, Rabinovic A. 2007. Adjusting batch effects in
microarray expression data using empirical Bayes methods.
Biostatistics 8:118‐127.

Jonsson P, Gullberg J, Nordström A, Kusano M, Kowalczyk M,
Sjöström M, Moritz T. 2004. A strategy for identifying
differences in large series of metabolomic samples analyzed
by GC/MS. Analytical Chemistry 76:1738‐1745.

Kanani H, Chrysanthopoulos PK, Klapa MI. 2008. Standardizing
GC–MS metabolomics. Journal of Chromatography B 871:
191‐201.

Karpievitch YV, Nikolic SB, Wilson R, Sharman JE, Edwards LM.
2014. Metabolomics data normalization with EigenMS. PLOS
One 9:e116221.

Karpievitch YV, Taverner T, Adkins JN, Callister SJ, Anderson GA,
Smith RD, Dabney AR. 2009. Normalization of peak
intensities in bottom‐up MS‐based proteomics using singular
value decomposition. Bioinformatics 25:2573‐2580.

Kell DB. 2006. Systems biology, metabolic modelling and
metabolomics in drug discovery and development. Drug
Discovery Today 11:1085‐1092.

Kirwan J, Broadhurst D, Davidson R, Viant M. 2013. Characterising
and correcting batch variation in an automated direct infusion
mass spectrometry (DIMS) metabolomics workflow.
Analytical and Bioanalytical Chemistry 405:5147‐5157.

Kuligowski J, Pérez‐Guaita D, Lliso I, Escobar J, León Z,
Gombau L, Solberg R, Saugstad O, Vento M, Quintás G. 2014.
Detection of batch effects in liquid chromatography‐mass
spectrometry metabolomic data using guided principal
component analysis. Talanta 130:442‐448.

Kuligowski J, Sánchez‐Illana Á, Sanjuán‐Herráez D, Vento M,
Quintás G. 2015. Intra‐batch effect correction in liquid
chromatography‐mass spectrometry using quality control
samples and support vector regression (QC‐SVRC). Analyst
140:7810‐7817.

Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B,
Johnson WE, Geman D, Baggerly K, Irizarry RA. 2010.
Tackling the widespread and critical impact of batch effects in
high‐throughput data. Nature Reviews Genetics 11:733‐739.

Li B, Tang J, Yang Q, Li S, Cui X, Li Y, Chen Y, Xue W, Li X, Zhu F.
2017. NOREVA: normalization and evaluation of MS‐based
metabolomics data. Nucleic Acids Research 45:W162‐W170.

Li Y, Ruan Q, Li Y, Ye G, Lu X, Lin X, Xu G. 2012. A novel
approach to transforming a non‐targeted metabolic profiling
method to a pseudo‐targeted method using the retention time
locking gas chromatography/mass spectrometry‐selected ions
monitoring. Journal of Chromatography A 1255:228‐236.

Livera AMD, Sysi‐Aho M, Jacob L, Gagnon‐Bartsch JA, Castillo S,
Simpson JA, Speed TP. 2015. Statistical methods for handling
unwanted variation in metabolomics data. Analytical
Chemistry 87:3606‐3615.

Long NP, Nghi TD, Kang YP, Anh NH, Kim HM, Park SK,
Kwon SW. 2020. Toward a standardized strategy of clinical

metabolomics for the advancement of precision medicine.
Metabolites 10:51.

Lu W, Bennett BD, Rabinowitz JD. 2008. Analytical strategies for
LC–MS‐based targeted metabolomics. Journal of chromatography
B 871:236‐242.

Luan H, Ji F, Chen Y, Cai Z. 2018. statTarget: a streamlined tool for
signal drift correction and interpretations of quantitative mass
spectrometry‐based omics data. Analytica Chimica Acta 1036:
66‐72.

Maher AD, Zirah SF, Holmes E, Nicholson JK. 2007. Experimental
and analytical variation in human urine in 1H NMR
spectroscopy‐based metabolic phenotyping studies. Analytical
Chemistry 79:5204‐5211.

Markley JL, Brüschweiler R, Edison AS, Eghbalnia HR, Powers R,
Raftery D, Wishart DS. 2017. The future of NMR‐based
metabolomics. Current Opinion in Biotechnology 43:34‐40.

Myers RP, Pollett A, Kirsch R, Pomier‐Layrargues G, Beaton M,
Levstik M, Duarte‐Rojo A, Wong D, Crotty P, Elkashab M.
2012. Controlled attenuation parameter (CAP): a noninvasive
method for the detection of hepatic steatosis based on
transient elastography. Liver International 32:902‐910.

Nygaard V, Rødland EA, Hovig E. 2016. Methods that remove batch
effects while retaining group differences may lead to exaggerated
confidence in downstream analyses. Biostatistics 17:29‐39.

Pandya K, Ray CA, Brunner L, Wang J, Lee JW, DeSilva B. 2010.
Strategies to minimize variability and bias associated with
manual pipetting in ligand binding assays to assure data
quality of protein therapeutic quantification. Journal of
Pharmaceutical and Biomedical Analysis 53:623‐630.

Patti GJ, Tautenhahn R, Siuzdak G. 2012. Meta‐analysis of
untargeted metabolomic data from multiple profiling
experiments. Nature Protocols 7:508‐516.

Peng J, Chen Y‐T, Chen C‐L, Li L. 2014. Development of a
universal metabolome‐standard method for long‐term LC–MS
metabolome profiling and its application for bladder cancer
urine‐metabolite‐biomarker discovery. Analytical chemistry
86:6540‐6547.

Peralbo‐Molina A, Calderón‐Santiago M, Priego‐Capote F, Jurado‐
Gámez B, De Castro ML. 2015. Development of a method for
metabolomic analysis of human exhaled breath condensate by
gas chromatography–mass spectrometry in high resolution
mode. Analytica Chimica Acta 887:118‐126.

Ransohoff DF. 2005. Lessons from controversy: ovarian cancer
screening and serum proteomics. Journal of the National
Cancer Institute 97:315‐319.

Redestig H, Fukushima A, Stenlund H, Moritz T, Arita M, Saito K,
Kusano M. 2009. Compensation for systematic cross‐
contribution improves normalization of mass spectrometry
based metabolomics data. Analytical Chemistry 81:7974‐7980.

Reese SE, Archer KJ, Therneau TM, Atkinson EJ, Vachon CM,
De Andrade M, Kocher J‐PA, Eckel‐Passow JE. 2013. A new
statistic for identifying batch effects in high‐throughput
genomic data that uses guided principal component analysis.
Bioinformatics 29:2877‐2883.

Reisetter AC, Muehlbauer MJ, Bain JR, Nodzenski M, Stevens RD,
Ilkayeva O, Metzger BE, Newgard CB, Lowe WL,
Scholtens DM. 2017. Mixture model normalization for non‐

20 | HAN AND LI



targeted gas chromatography/mass spectrometry metabolomics
data. BMC Bioinformatics 18:84.

Rodríguez‐Coira J, Delgado‐Dolset MI, Obeso D, Dolores‐
Hernández M, Quintás G, Angulo S, Barber D, Carrillo T,
Escribese MM, Villaseñor A. 2019. Troubleshooting in large‐
scale LC‐ToF‐MS metabolomics analysis: solving complex
issues in big cohorts. Metabolites 9:247.

Rong Z, Tan Q, Cao L, Zhang L, Deng K, Huang Y, Zhu Z‐J, Li Z, Li K.
2020. NormAE: deep adversarial learning model to remove batch
effects in liquid chromatography mass spectrometry‐based
metabolomics data. Analytical Chemistry 92:5082‐5090.

Saenz AJ, Petersen CE, Valentine NB, Gantt SL, Jarman KH,
Kingsley MT, Wahl KL. 1999. Reproducibility of matrix‐
assisted laser desorption/ionization time‐of‐flight mass
spectrometry for replicate bacterial culture analysis. Rapid
Communications in Mass Spectrometry 13:1580‐1585.

Salerno Jr S, Mehrmohamadi M, Liberti MV, Wan M, Wells MT,
Booth JG, Locasale JW. 2017. RRmix: a method for simultaneous
batch effect correction and analysis of metabolomics data in the
absence of internal standards. PLOS One 12:e0179530.

Sanchez‐Illana A, Pérez‐Guaita D, Cuesta‐García D, Sanjuan‐
Herráez JD, Vento M, Ruiz‐Cerdá JL, Quintas G, Kuligowski J.
2018. Model selection for within‐batch effect correction in
UPLC‐MS metabolomics using quality control‐support vector
regression. Analytica Chimica Acta 1026:62‐68.

Sánchez‐Illana Á, Piñeiro‐Ramos JD, Sanjuan‐Herráez JD,
Vento M, Quintás G, Kuligowski J. 2018. Evaluation of batch
effect elimination using quality control replicates in LC‐MS
metabolite profiling. Analytica Chimica Acta 1019:38‐48.

Sangster T, Major H, Plumb R, Wilson AJ, Wilson ID. 2006. A
pragmatic and readily implemented quality control strategy
for HPLC‐MS and GC‐MS‐based metabonomic analysis.
Analyst 131:1075‐1078.

Scholz M, Gatzek S, Sterling A, Fiehn O, Selbig J. 2004. Metabolite
fingerprinting: detecting biological features by independent
component analysis. Bioinformatics 20:2447‐2454.

Ser Z, Liu X, Tang NN, Locasale JW. 2015. Extraction parameters
for metabolomics from cultured cells. Analytical Biochemistry
475:22‐28.

Shaham U, Stanton KP, Zhao J, Li H, Raddassi K, Montgomery R,
Kluger Y. 2017. Removal of batch effects using distribution‐
matching residual networks. Bioinformatics 33:2539‐2546.

Shen X, Gong X, Cai Y, Guo Y, Tu J, Li H, Zhang T, Wang J, Xue F,
Zhu Z‐J. 2016. Normalization and integration of large‐scale
metabolomics data using support vector regression.
Metabolomics 12:89.

Soininen P, Kangas AJ, Würtz P, Suna T, Ala‐Korpela M. 2015.
Quantitative serum nuclear magnetic resonance
metabolomics in cardiovascular epidemiology and genetics.
Circulation: Cardiovascular Genetics 8:192‐206.

Song X, Zhang B‐L, Liu H‐M, Yu B‐Y, Gao X‐M, Kang L‐Y. 2011.
IQMNMR: open source software using time‐domain NMR
data for automated identification and quantification of
metabolites in batches. BMC Bioinformatics 12:337.

Stokvis E, Rosing H, Beijnen JH. 2005. Stable isotopically labeled
internal standards in quantitative bioanalysis using liquid
chromatography/mass spectrometry: necessity or not? Rapid

Communications in Mass Spectrometry: an International
Journal Devoted to the Rapid Dissemination of Up‐to‐the‐
Minute Research in Mass Spectrometry 19:401‐407.

Sud M, Fahy E, Cotter D, Azam K, Vadivelu I, Burant C, Edison A,
Fiehn O, Higashi R, Nair KS. 2015. Metabolomics Workbench:
an international repository for metabolomics data and metadata,
metabolite standards, protocols, tutorials and training, and
analysis tools. Nucleic Acids Research 44:D463‐D470.

Sykes BD. 2007. Urine stability for metabolomic studies: effects of
preparation and storage. Metabolomics 3:19‐27.

Sysi‐Aho M, Katajamaa M, Yetukuri L, OrešičM. 2007. Normalization
method for metabolomics data using optimal selection of
multiple internal standards. BMC Bioinformatics 8:93.

Teahan O, Gamble S, Holmes E, Waxman J, Nicholson JK,
Bevan C, Keun HC. 2006. Impact of analytical bias in
metabonomic studies of human blood serum and plasma.
Analytical Chemistry 78:4307‐4318.

Theodoridis G, Gika HG, Wilson ID. 2008. LC‐MS‐based
methodology for global metabolite profiling in metabonomics/
metabolomics. Trends in Analytical Chemistry 27:251‐260.

Thonusin C, IglayReger HB, Soni T, Rothberg AE, Burant CF,
Evans CR. 2017. Evaluation of intensity drift correction
strategies using MetaboDrift, a normalization tool for multi‐
batch metabolomics data. Journal of Chromatography A 1523:
265‐274.

Tung P‐Y, Blischak JD, Hsiao CJ, Knowles DA, Burnett JE,
Pritchard JK, Gilad Y. 2017. Batch effects and the effective design
of single‐cell gene expression studies. Scientific Reports 7:39921.

van der Werf MJ, Overkamp KM, Muilwijk B, Coulier L,
Hankemeier T. 2007. Microbial metabolomics: toward a platform
with full metabolome coverage. Analytical Biochemistry 370:
17‐25.

Veselkov KA, Vingara LK, Masson P, Robinette SL, Want E, Li JV,
Barton RH, Boursier‐Neyret C, Walther B, Ebbels TM. 2011.
Optimized preprocessing of ultra‐performance liquid
chromatography/mass spectrometry urinary metabolic
profiles for improved information recovery. Analytical
Chemistry 83:5864‐5872.

Vinaixa M, Samino S, Saez I, Duran J, Guinovart JJ, Yanes O. 2012.
A guideline to univariate statistical analysis for LC/MS‐based
untargeted metabolomics‐derived data. Metabolites 2:775‐795.

Wang S‐Y, Kuo C‐H, Tseng YJ. 2012. Batch Normalizer: a fast total
abundance regression calibration method to simultaneously
adjust batch and injection order effects in liquid
chromatography/time‐of‐flight mass spectrometry‐based
metabolomics data and comparison with current calibration
methods. Analytical Chemistry 85:1037‐1046.

Wehrens R, Hageman JA, van Eeuwijk F, Kooke R, Flood PJ,
Wijnker E, Keurentjes JJ, Lommen A, van Eekelen HD,
Hall RD. 2016. Improved batch correction in untargeted MS‐
based metabolomics. Metabolomics 12:88.

Weindl D, Wegner A, Jäger C, Hiller K. 2015. Isotopologue ratio
normalization for non‐targeted metabolomics. Journal of
Chromatography A 1389:112‐119.

Wishart DS. 2016. Emerging applications of metabolomics in drug
discovery and precision medicine. Nature Reviews Drug
Discovery 15:473‐484.

BATCH EFFECTS IN METABOLOMICS | 21



Worley B, Powers R. 2013. Multivariate analysis in metabolomics.
Current Metabolomics 1:92‐107.

Wu L, Mashego MR, van Dam JC, Proell AM, Vinke JL, Ras C,
vanWindenWA, van Gulik WM, Heijnen JJ. 2005. Quantitative
analysis of the microbial metabolome by isotope dilution mass
spectrometry using uniformly 13C‐labeled cell extracts as
internal standards. Analytical Biochemistry 336:164‐171.

Wu Y, Li L. 2012. Determination of total concentration of
chemically labeled metabolites as a means of metabolome
sample normalization and sample loading optimization in
mass spectrometry‐based metabolomics. Analytical Chemistry
84:10723‐10731.

Wu Y, Li L. 2016. Sample normalization methods in quantitative
metabolomics. Journal of Chromatography A 1430:80‐95.

Xia J, Broadhurst DI, Wilson M, Wishart DS. 2013. Translational
biomarker discovery in clinical metabolomics: an introductory
tutorial. Metabolomics 9:280‐299.

Yang Q, Wang Y, Zhang Y, Li F, Xia W, Zhou Y, Qiu Y, Li H,
Zhu F. 2020. NOREVA: enhanced normalization and
evaluation of time‐course and multi‐class metabolomic data.
Nucleic Acids Research 48:W436‐W448.

Yang S, Sadilek M, Lidstrom ME. 2010. Streamlined
pentafluorophenylpropyl column liquid chromatography–tandem
quadrupole mass spectrometry and global 13C‐labeled internal
standards improve performance for quantitative metabolomics in
bacteria. Journal of Chromatography A 1217:7401‐7410.

Zaitsu K, Noda S, Ohara T, Murata T, Funatsu S, Ogata K, Ishii A,
Iguchi A. 2019. Optimal inter‐batch normalization method for
GC/MS/MS‐based targeted metabolomics with special
attention to centrifugal concentration. Analytical and
Bioanalytical Chemistry 411:6983‐6994.

Zhang A, Sun H, Wang P, Han Y, Wang X. 2012. Modern analytical
techniques in metabolomics analysis. Analyst 137:293‐300.

Zhao Y, Hao Z, Zhao C, Zhao J, Zhang J, Li Y, Li L, Huang X, Lin X,
Zeng Z. 2016. A novel strategy for large‐scale metabolomics
study by calibrating gross and systematic errors in gas
chromatography–mass spectrometry. Analytical Chemistry 88:
2234‐2242.

Zhou B, Xiao JF, Tuli L, Ressom HW. 2012. LC‐MS‐based
metabolomics. Molecular BioSystems 8:470‐481.

Zhou H, Yuen PS, Pisitkun T, Gonzales PA, Yasuda H, Dear JW,
Gross P, Knepper MA, Star RA. 2006. Collection, storage,
preservation, and normalization of human urinary
exosomes for biomarker discovery. Kidney International 69:
1471‐1476.

Zukunft S, Sorgenfrei M, Prehn C, Möller G, Adamski J. 2013.
Targeted metabolomics of dried blood spot extracts.
Chromatographia 76:1295‐1305.

AUTHOR BIOGRAPHIES

Wei Han received his PhD in analytical
chemistry at the University of Alberta in
2017, under the supervision of Prof. Liang
Li. His thesis work focused on the devel-
opment of blood metabolomics for biomar-
ker discovery using high‐performance

chemical isotope labeling LC‐MS. After graduation, he
continues to work in Prof. Li's lab to bring metabolomics
technologies into mainstream bioscience and clinical
labs. He develops data processing, metabolite identifica-
tion, and statistical strategies for large‐scale metabolo-
mics. He also develops and applies novel bioinformatics
tools for biomarker discovery of various diseases.

Liang Li received his PhD in Analytical
Chemistry at the University of Michigan in
1989 under the supervision of Prof. David
Lubman. He joined the University of
Alberta in July 1989, where he is Professor

of Chemistry and Adjunct Professor of Biochemistry. He
is a Co‐Director of the Metabolomics Innovation Centre
(TMIC) of Canada. He is an elected fellow of the Royal
Society of Canada (Academy of Science). Prof. Li was
Tier 1 Canada Research Chair in Analytical Chemistry
from 2005 to 2019. He served as Director, Alberta Cancer
Board Proteomics Resource Laboratory, from 2000 to
2005. He was Chair of Analytical Chemistry Division at
the University of Alberta from 2007 to 2019. Prof. Li has
received a number of national and international awards
and honors. He is an editor of Analytica Chimica Acta
since 2005. He is also a member of the editorial advisory
board in a number of scientific journals.

How to cite this article: Han W, Li L. Evaluating
and minimizing batch effects in metabolomics.
Mass Spec Rev. 2020;1–22.
https://doi.org/10.1002/mas.21672

22 | HAN AND LI

https://doi.org/10.1002/mas.21672



